Remedial Action Plan Former Boral Timber Site Lot 310, Murray Road Wingham NSW

Prepared for:

Boral Limited Greystanes Road (PO Box 42) Wentworthville NSW 2145

19 February 2001 Project Reference: J109264B

Prepared by:

IT Environmental (Australia) Pty Ltd 17 Forrester Street, Kingsgrove New South Wales, Australia

Written/Submitted by:

Matthew Bennett Project Manager

IT Environmental (Australia) Pty Ltd ABN 89 003 931 057 Tel: (02) 9502 4844, Fax: (02) 9502 2105 mbennett@theitgroup.com

the Gigroup

Record of Distribution

No. of copies	neput neput				Initials
3	J109264B-R01	Final	19/02/01	Boral Limited, Peter Allcorn	MOR
1	J109264B-R01	Final	19/02/01	IT Environmental, Sydney file	

Table of Contents

1	Intro	oduction 1
	1.1 1.2 1.3	Background1 Objectives1 Occupational Health and Safety
2	Bacl	ground Information 2
	2.1	Site Identification
	2.2	Proposed End Land Use for the Site2
	2.3	Site Geology and Hydrogeology2
	2.4	Extent and Distribution of Contaminants2
3	Rem	ediation Strategy 3
	3.1	Site Validation Criteria33.1.1Excavation Validation Criteria33.1.2Offsite Disposal Criteria33.1.3Imported Fill Validation Criteria3
	3.2	Excavation of Impacted Soil4
	3.3	Validation of Excavation4
	3.4	Offsite Disposal5
	3.5	Backfilling of Excavation and Compaction5
	3.6	Environmental Management5
4		rences

List of Attachments

FIGURES

Figure 1Site Location MapFigure 2Site Map

APPENDICES

Appendix A Waste Disposal Criteria

Remedial Action Plan, Former Boral Timber Site, Lot 310 Murray Road, Wingham

the Gigroup

1 Introduction

1.1 Background

IT Environmental (Australia) Pty Ltd were commissioned by Boral Limited (Boral) to prepare a remedial action plan (RAP) for remediation works at their property located on Murray Road in Wingham, NSW (**Figure 1**).

The RAP has been prepared to provide details of the remediation approach to be undertaken at one location of the site, based on the results of an environmental site assessment (ESA) reported to Boral by *IT* in November 1999 (Ref: IT, 1999).

1.2 Objectives

The objectives of the RAP are to:

- Indicate the proposed end land use for the site, and discuss and present remediation criteria for the proposed end land use;
- Define the area of the site to be remediated; and
- Outline the remedial strategy.

1.3 Occupational Health and Safety

A site health and safety plan will be prepared for remedial works at the site, which will include:

- Hazard identification and control
- Personal protective equipment requirements
- Work zones
- Incident reporting
- Emergency contact numbers

The safety plan for the remedial works will comply with all relevant safety regulations.

the Gigroup

2 Background Information

2.1 Site Identification

The site is located on the corner of Murray Road and Lambert Street in Wingham, NSW (**Figure 1**). The site is identified as Lot 310 in DP 976294.

One area of the site has been identified for remediation based on the results of previous investigation (IT, 1999). This area is identified on **Figure 2**.

2.2 Proposed End Land Use for the Site

The RAP has been prepared on the basis that the site will be suitable for low density residential landuse.

2.3 Site Geology and Hydrogeology

The site is generally overlain with topsoil immediately over weathered bedrock. Refusal on bedrock has occurred during previous investigations as shallow as 0.5m below ground surface (bgs).

No shallow groundwater was detected at the site (IT, 1999). Remediation at this site deals only with the shallow soil profile (to 0.5m). Subsequently, groundwater at the site is not considered an issue during the remedial works presented in this RAP.

2.4 Extent and Distribution of Contaminants

Sampling undertaken during the previous ESA (*IT*, 1999) indicated the following impact required remediation:

 A near surface sample to depth 0.15m bgs detected total petroleum hydrocarbons (TPH) at 2661mg/kg in the C₁₅-C₃₆ range. This sample was collected immediately beneath the concrete floor of a former factory/storage shed. A sample between 0.3-0.5m bgs detected TPH at 115mg/kg in the C₂₉-C₃₆ range. The impact may be related to equipment storage and maintenance, and is expected to be isolated.

3 Remediation Strategy

3.1 Site Validation Criteria

Based on the recommendations made to Boral following completion of the previous ESA (*IT*, 1999), the remedial works presented in this RAP target TPH impacted surface soil at one location only. The following criteria are proposed.

3.1.1 Excavation Validation Criteria

NSW EPA (1994) guidelines for sensitive landuse will be used for validation of TPH results. These criteria are shown in the table below.

TPH range	Excavation Validation Criteria
	(mg/kg)
C6-C9	65
C10-C36	1000

3.1.2 Offsite Disposal Criteria

Off-site disposal of excavated soil may be required. Soil results will be compared to the NSW EPA (1999) Environmental Guidelines: Assessment, Classification and Management of Liquid and Non-Liquid Wastes. Tables A2, A3 and A4 from these guidelines will form the basis for waste classification of any soil to be disposed to landfill. Copies of these tables are included in Appendix A.

Further sampling after excavation is required to characterise the material for offsite disposal.

3.1.3 Imported Fill Validation Criteria

If impacted fill is required to backfill the excavation, then unless the backfill supplied is certified as virgin excavated natural material (VENM), all imported fill will be validated against NSW EPA (1998) NEHF A criteria for metals, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). These criteria are also contained in the National Environment Protection Measure (NEPM, 1999) (Schedule B1, Table 5-A, Column A). Fill material will also be validated against NSW EPA (1994) guidelines for TPH and benzene, toluene, ethylbenzene and xylenes (BTEX) compounds. Backfill validation criteria are shown in the table below.

Analyte	Backfill Validation Criteria
	(mg/kg)
Arsenic	500
Cadmium	100
Chromium (III)	600000
Chromium (VI)	500
Copper	5000
Lead	1500
Mercury	75
Nickel	3000
Zinc	35000

IT Environmental A Member of The IT Group

the Gigroup

Analyte	Backfill Validation Criteria (mg/kg)
OCPs	
• Aldrin + Dieldrin	50
• DDT	1000
Heptachlor	50
PCBs (total)	50
TPH (C6-C9)	65
TPH (C10-C36)	1000
Benzene	1
Toluene	1.4
Ethylbenzene	3.1
Xylenes (total)	14

3.2 Excavation of Impacted Soil

Impacted material will be excavated based on olfactory and visual recognition of impact, such as hydrocarbon odour and visible staining, as well as field screening for volatile organic compounds (VOCs) using a portable photoionisation detector (PID). However, the previous results indicate non-volatile hydrocarbon impact, which suggests that the PID may not detect any VOCs.

It is assumed that only a minor area requires excavation to around 0.3m depth, based on previous investigation results. Once the impacted soil is excavated, it will be stockpiled adjacent to the excavation for characterisation sampling.

Any concrete removed in order to excavate impacted soil will be placed under cover near the excavation area, for removal by Boral.

3.3 Validation of Excavation

Following removal of impacted material, validation samples will be collected from the walls and base of the excavation. Excavation walls will be validated at a rate of 1 sample per 10m (linear), and the base of the excavation will be validated at a rate of 1 sample per 25m². A total of 4 wall samples (1 along each wall) and 1 base sample is assumed.

Based on the results of the previous site assessment, validation samples will be analysed for TPH only.

For quality assurance/quality control (QA/QC), duplicate and triplicate samples will be taken at a rate of 1 duplicate for every 10 primary samples. The duplicate samples will be analysed by the primary laboratory, while the triplicate sample will be analysed by a secondary laboratory. Each laboratory will be NATA (National Association of Testing Authorities) accredited for the analyses requested.

3.4 Offsite Disposal

Once the impacted material is excavated and stockpiled, it will be sampled at a rate of 1 sample per $25m^3$ (1 sample is assumed). The sample will be analysed for TPH as well as total and leachable metals.

It is assumed that the material can be disposed of to a local landfill as inert waste (if required) after additional characterisation sampling has been undertaken. It is assumed that Boral will arrange disposal following characterisation, if required.

If the results of stockpile sampling indicate that the soil meets site validation criteria, disposal of the soil off site will not be required.

3.5 Backfilling of Excavation and Compaction

Once validation of the excavation has been achieved to the site validation criteria, Boral will arrange for the excavation to be backfilled and reinstated, if required.

3.6 Environmental Management

As the excavation is located away from any potential environmental receptors and the site boundaries, minor environmental management controls will be required during remediation. These will include:

- Dust will be monitored visually, and if deemed to be excessive and impacting offsite areas during windy periods, work will be stopped until such time as dust will not be an issue. Wetting may be required if dust becomes an issue.
- Excavated soil will be placed on a concrete surface beneath the covered area of the shed, such that no runoff can occur.

IT ENVIRONMENTAL (AUSTRALIA) PTY LTD

Remedial Action Plan, Former Boral Timber Site, Lot 310 Murray Road, Wingham

4 References

IT (1999) Additional Environmental Site Assessment, Boral Timber, Wingham. Report prepared by IT Environmental (Australia) Pty Ltd for Boral Limited, dated 3 November 1999 (Reference J109264A).

NEPM (1999) National Environment Protection (Assessment of Site Contamination) Measure, Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater, December 1999. Prepared by the National Environment Protection Council.

NSW EPA (May 1999) Environmental Guidelines: Assessment, Classification and Management of Liquid and Non-Liquid Wastes.

NSW EPA (1998) Guidelines for the NSW Site Auditor Scheme.

NSW EPA (1994) Guidelines for Assessing Service Stations Sites.

the Gigroup

÷

IT Environmental A Member of The IT Group

Remedial Action Plan Former Boral Wingham Timber Plant, Lot 310

the **(figroup**

IT Environmental A Member of The IT Group

APPENDIX A Offsite Disposal Criteria

Remedial Action Plan Former Boral Wingham Timber Plant, Lot 310

Table A2: Summary of criteria for chemical contaminants in non-liquid waste classification (See also Table 6 in Section 3.4.3.)							
Waste classification ¹	Criteria ² for classification (any of the alternative options given)	Comments					
	1. SCC test values \leq CT1.	TCLP test not required.					
Inert	 TCLP test values ≤ TCLP1 and SCC test values ≤ SCC1. 						
	 TCLP test values ≤ TCLP1 <u>and</u> SCC test values > SCC1 <u>and</u> immobilisation³ is EPA approved. 	Without EPA approval of immobilisation, classify as solid, industrial or hazardous.					
	1. SCC test values ≤ CT2.	TCLP test not required.					
Solid	2. TCLP1 < TCLP test values ≤ TCLP2 and SCC test values ≤ SCC2.						
7	3. TCLP1 < TCLP test values ≤ TCLP2 and SCC test values > SCC2 and the immobilisation ³ is EPA approved.	Without EPA approval of immobilisation, classify as industrial or hazardous.					
	1. SCC test values ≤ CT3.	TCLP test not required.					
	 TCLP2 < TCLP test values ≤ TCLP3 and SCC test values ≤ SCC3. 						
Industrial	3. TCLP test values ≤ TCLP3 <u>and</u> SCC2 < SCC test values ≤ SCC3.	12 12					
	 TCLP2 < TCLP test values ≤ TCLP3 and SCC test values > SCC3 and immobilisation³ is EPA approved. 	Without EPA approval of immobilisation, classify as hazardous.					
Hazardous	1. TCLP test values > TCLP3.	Store or treat waste as appropriate.					
	 TCLP test values ≤ TCLP3 and SCC test values > SCC3 and immobilisation is not EPA approved. 	Store or treat waste as appropriate.					

Notes:

1. See also the general rules relating to waste classification (listed earlier in Part 5) for other criteria that must be satisfied before the waste can be classified.

2. These criteria apply to each toxic and ecotoxic contaminant present in the waste (see Tables A3 and A4).

3. In certain cases the EPA will consider specific conditions, such as the segregation of such waste from all other types of waste in a monofill or a monocell, in order to achieve a greater margin of safety against a possible failure of the immobilisation in the future. Information about the construction and operation of a monofill/monocell is available in the *Draft Environmental Guidelines for Industrial Waste Landfilling*, (EPA 1998a).

Worked examples of this assessment and classification process are given later in this part of the Appendix.

		lues of t <i>otal cor</i> fication without			
Contaminant	Inert Solid waste waste		Industrial waste	CAS registry numbe	
	CT1 (mg/kg)	CT2 (mg/kg)	CT3 (mg/kg)		
Arsenic	10	100	400		
Benzene	1	10	40	71-43-2	
Benzo(a)pyrene²	0.08	0.8	3,2	50-32-8	
Beryllium	2	20	80		
Cadmium	2	20	80		
Carbon tetrachloride	1	10	40	56-23-5	
Chlorobenzene	2.00	2000	8000	108-90-7	
Chloroform	12	120	480	67-66-3	
Chromium (VI)³	10	100	400		
n-Cresol	400	4000	16000	108-39-4	
o-Cresol	400	4000	16000	95-48-7	
p-Cresol	400	4000	16000	106-44-5	
Cresol (total)	400	4000	16000	1319-77-3	
Cyanide (amenable)⁴	7	70	280		
Cyanide (total)	32	320	1280		
2,4-D	20	200	800	94-75-7	
1,2-Dichlorobenzene	8.6	86	34.4	95-50-1	
1,4-Dichlorobenzene	15	150	600	106-46 -7	
1,2-Dichloroethane	1	10	40	107-06 - 2	
1,1-Dichloroethylene	1.4	14	56	75-35-4	
Dichloromethane	17.2	172	688	75-09-2	
2,4-Dinitrotoluene	0.26	2.6	10.4	121-14-2	
Ethylbenzene	60	600	2400	100-41-4	
Fluoride	300	3000	12000		
Lead	10	100	400		
Viercury	0.4	4	16		
Methyl ethyl ketone	400	4000	16000	78-93-3	
Molybdenum	.10	100	400		
Nickel	4	40	160		
Nitrobenzene	4	40	160	98-95-3	
C6-C9 petroleum hydrocarbons	N/A ⁶	N/A ⁶	N/A ⁶		

64

	out doing the			on of non-liquid
		alues of t <i>otal cor</i> fication without		
Contaminant	Inert waste	Solid waste	Industrial waste	CAS registry number
	CT1 (mg/kg)	CT2 (mg/kg)	CT3 (mg/kg)	
C10-C36 petroleum hydrocarbons	N/A ⁶	N/A ⁶	N/A ⁶	
Phenol (non-halogenated)	28.8	288	1152	108-95-2
Polychlorinated biphenyls ⁵	N/A ⁶	N/A ⁶	N/A ⁶	1336-36-3
Polycyclic aromatic hydrocarbons (total)⁵	N/A ⁶	N/A ⁶	N/A ⁶	-
Scheduled chemicals⁵	N/A ⁶	N/A ⁶	N/A ⁶	Refer to Appendix 5
Selenium	2	20	80	
Silver	10	100	400	
Styrene (vinyl benzene)	6	. 60	240	100-42-5
1,1,1,2-Tetrachloroethane	20	2.00	800	630-20-6
1,1,2,2-Tetrachloroethane	2.6	26	104	79-34-5
Fetrachloroethylene	1.4	14	56	127-18-4
Foluene	28.8	288	1152	108-88-3
1,1,1-Trichloroethane	60	600	2400	71-55-6
,1,2-Trichloroethane	2.4	24	96	79-00-5
frichloroethylene	1	10	40	79-01-6
2,4,5-Trichlorophenol	800	8000	32000	95-95-4
2,4,6-Trichlorophenol	4	40	160	88-06-2
/inyl chloride	0.4	4	16	75-01-4
(ylenes (total)	100	1000	4000	1330-20-7

Notes to Table A3:

- 1. For organic and inorganic chemical contaminants not listed in Table A3, contact the EPA for disposal requirements. Note that aluminium, barium, boron, chromium (0 and III oxidation states), cobalt, copper, iron, manganese, vanadium and zinc have deliberately not been listed in this table and need not be tested for.
- 2. There may be a need for the laboratory to concentrate the sample to achieve the TCLP limit value for benzo(a)pyrene with confidence.
- 3. These limits apply to chromium in the +6 oxidation state only.
- 4. Analysis for cyanide (amenable) is the established method used to assess potentially leachable cyanide. Other methods may be considered by the EPA if it can be demonstrated that these methods yield the same information.
- 5. Scheduled chemicals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls are assessed by using SCC1, SCC2 and SCC3. No TCLP analysis is required.
- 6. N/A means not applicable, but, see Table A4 for SCC criteria.

	Maximum	Maximum values for <i>leachable concentration</i> and total concentration when used together.					
	11110 COLLEGE VILLA	Inert waste Solid waste Industrial waste					
	Inert	waste	Solid	Naste	Industria	al waste	
Contaminant	Leachable concentra- tion	Total concentra- tion	Leachable concentra- tion	Total concentra- tion	Leachable concentra- tion	Total concentra- tion	CAS registry number
-	TCLP1 (mg/L)	SCC1 (mg/kg)	TCLP2 (mg/L)	SCC2 (mg/kg)	TCLP3 (mg/L)	SCC3 (mg/kg)	
Arsenic	0.5	500	5.0^{2}	500	20	2000	
Benzene	0.05	18	0,5 ²	18	2	72	71-43-2
Benzo(a)pyrene [°]	0.004^{3}	1	0.04^{4}	10	0.16	23	50-32 - 8
Beryllium	0.1	100	1.0^{5}	100	4	400	R
Cadinium	0.1	100	1.0^{2}	100	4	400	
Carbon tetrachloride	0.05	18	0,5²	18	2	72	56-23-5
Chlorobenzene	10	3600	100 ²	3600	400	14400	108-90-7
Chloroform	0.6	216	6²	216	24	864	67-66-3
Chromium (VI)'	0.5	1900	5²	1900	20	7600	
m-Cresol	2.0	7200	200 ²	7200	800	28800	108-39-4
o-Cresol	20	7200	200 ²	7200	800	28800	95-48-7
p-Cresol	20	7200	200 ²	7200	800	28800	106-44-5
Cresol (total)	20	7200	200²	7200	800	28800	1319-77-3
Cyanide (amenable) ^{%,9}	0.35	300	3.5 [®]	300	14	1200	
Cyanide (total) ⁸	1.6	5900	16 ^ª	5900	64	23600	
2,4-D	1	360	10 ²	360	40	1440	94-75-7
1,2-Dichlorobenzene	0.43	155	4.3 ²	155	17.2	620	95-50-1
1,4-Dichlorobenzene	0.75	270	7.5 ²	270	30	1080	106-46-7
1,2-Dichloroethane	0.05	18	0,5²	18	2	72	107-06-2
1,1-Dichloroethylene	0.07	25	0.7 ²	25	2.8	100	75-35-4
Dichloromethane	0.86	310	8.6 ²	310	34.4	1240	75-09-2
2,4-Dinitrotoluene	0.013	4.68	0.13^{2}	4.68	0.52	18.7	121-14-2
Ethylbenzene	3	1080	30 ⁶	1080	120	4320	100-41-4
Fluoride	15	10000	150	10000	600	40000	
Lead	0.5	1500	5²	1500	20	6000	
Mercury	0.02	50	0.22	50	0.8	200	-
Methyl ethyl ketone	20	7200	200 ²	7200	800	28800	78-93-3

66

	Maximum values for <i>leachable concentration</i> and total concentration when used together.						
21	Inert waste		Solid waste		Industrial waste		
Contaminant	Leachable concentra- tion	Total concentra- tion	Leachable concentra- tion	Total concentra- tion	Leachable concentra- tion	Total concentra- tion	CAS registry number
	TCLP1 (mg/L)	SCC1 (mg/kg)	TCLP2 (mg/L)	SCC2 (mg/kg)	TCLP3 (mg/L)	SCC3 (mg/kg)	
Molybdenum	0.5	1000	5"	1000	20	4000	
Nickel	0.2	1050	2 ⁶	1050	8	4200	
Nitrobenzene	0.2	72.	2 ²	72	8	288	98-95-3
C6-C9 petroleum hydrocarbons ¹⁴	N/A ¹⁴	650	N/A ¹⁴	650	N/A ¹⁴	2600	-
C10-C36 petroleum hydrocarbons ¹⁴	N/A ¹⁴	5000	N/A ¹⁴	10000	N/A ¹⁴	40000	-
Phenol (non-halogenated)	1.44	518	14.4^{10}	518	57.6	2073	108-95-2
Polychlorinated biphenyls "	N/A ¹¹	2	N/A ¹¹	<50	N/A ¹¹	<50	1336-36-3
Polycyclic aromatic hydrocarbons(total) ^{11,12}	N/A ¹¹	200	N/A ¹¹	200	N/A ¹¹	800	-
Scheduled chemicals ^{11, 13}	N/A"	1	N/A ¹¹	<50	N/A ¹¹	<50	Refer to Appendix 5
Selenium	0.1	50	1 ²	50	4	200	
Silver	0.5	180	5.0 ²	180	20	720	
Styrene (vinyl benzene)	0.3	108	36	108	12	432	100-42-5
1,1,1,2 – Tetrachloroethane	1	360	10 ²	360	40	1440	630-20-6
l,1,2,2- Fetrachloroethane	0.13	46.8	1.3 ²	46.8	5.2	187.2	79-34-5
Fetrachloroethylene	0.07	25.2	0.7^{2}	25.2	2.8	100.8	127 - 18-4
Foluene	1.44	518	14.4^{10}	518	57.6	20'73	108-88-3
,1,1-Trichloroethane	3	1080	30²	1080	120	4320	71-55-6
.,1,2-Trichloroethane	0.12	43.2	1.2 ²	43.2	4.8	172.8	79-00-5
richloroethylene	0.05	18	0.5 ²	18	2	72	79-01-6
,4,5-Trichlorophenol	40	14400	400 ²	14400	1600	57600	95-95-4
,4,6-Trichlorophenol	0.2	72	2 ²	72	8	288	88-06-2
/inyl chloricle	0.02.	7.2	0.2 ²	7.2	0.8	28.8	75-01 - 4
(ylenes (total)	5	1800	50 ¹⁵	1800	2.00	72.00	1330-20-7

 Table A4: Leachable concentration (TCLP) and total concentration (SCC) values for non-liquid waste classification¹

NSW Environment Protection Authority

SITE AUDIT STATEMENT

Schedule 1, Form 2 (Contaminated Land Management Regulation 1998)

SITE AUDITOR (accredited under the Contaminated Land Management Act 1997):

Name:	Dr Willia	m Ryall	Phone:	02 9810 7973				
Company:	Contamin	ation Management Pty Ltd	Fax:	02 9810 5956				
Address:	PO Box	1021	Accred. No:	9809				
	ROZELLE	NSW 2039						
SITE AUDIT STATEMENT NO: WRR98/1								
SITE DETAILS:								
Address:		Murray Road, Wingham	Postcode:	2429				
Lot and DP numb	ber:	Lot 310 in DP 976294.						
Local governmen	t area:	Greater Taree Council						
SITE AUDIT REC	UESTED	BY:						
Name:		Mr P Allcom						
Company:		Boral Limited						
Address:		Level 39, AMP Centre						
		50 Bridge Street, Sydney	Postcode:	2000				
Phone:		9220 6406	Fax:	9233 3725				
Name of contact person (if different from above): N/A								
•								

Consultancy(ies) who conducted the site investigation(s) and/or remediation:

IT Environmental (Australia) Pty Ltd.

Title(s) of report(s) reviewed:

- 1. Remedial Action Plan, Lot 310, Former Boral Timber Site, Lot 310, Murray Road, Wingham, NSW" by IT Environmental (Australia) Pty Ltd (ITE) dated 19 February 2001.
- 2. "Excavation and Validation of Hydrocarbon 'Hotspot' Lot 310, Former Boral Timber Site, Murray Road, Wingham, NSW" by ITE dated 18 December 2001.

Other information reviewed:

N/A.

Summary Site Audit Report

Title: Summary Site Audit Report. Lot 310 Former Boral Timber Site, Wingham.

Date : 19 March 2002.

I have completed a site audit (as defined in the *Contaminated Land Management Act 1997*) and reviewed the reports and information referred to above with due regard to relevant laws and guidelines. I certify that the site (tick **all** appropriate boxes):

- (a) is suitable for the following use(s):
 - residential, including substantial vegetable garden and poultry;
 - residential, including substantial vegetable garden excluding poultry;
 - residential with accessible soil, including garden (minimal home-grown produce contributing less than 10% fruit and vegetable intake) excluding poultry;
 - residential with minimal opportunity for soil access, including units;
 - daycare centre, preschool, primary school;
 - secondary school;
 - park, recreational open space, playing field;
 - commercial/industrial use;
 - other (please specify): N/A

subject to:

Condition(s) (please specify): N/A

(b) is not suitable for any beneficial use due to risk of harm from contamination.

(comments): N/A

I am accredited by the NSW Environment Protection Authority under the Contaminated Land Management Act 1997 as a Site Auditor.

Accreditation Number: 9809

I certify that:

- (a) I have personally examined and am familiar with the information contained in this statement, including the reports and information referred to in this statement, and
- (b) this statement is, to the best of my knowledge, true, accurate and complete, and
- (c) on the basis of my inquiries made to those individuals immediately responsible for making the reports, and obtaining the information, referred to in this statement, those reports and that information are, to the best of my knowledge, true, accurate and complete.

I am aware that there are penalties for wilfully submitting false, inaccurate or incomplete information.

Signed:

Date: 19 March 2002

FORWARD TO: Manager, Contaminated Sites Section NSW Environment Protection Authority PO Box A290 SYDNEY SOUTH NSW 1232

Phone: 02 9995 5614 Fax: 02 9995 5999

Summary Site Audit Report

Lot 310 Former Boral Timber Site Wingham

0078

19 March 2002

Contamination Management Pty Ltd ABN 53 082 736 276

ABN 53 082 736 276 PO Box 1021 Rozelle NSW 2039 Tel 9810 7973 Fax 9810 5956

1. Introduction

I have completed an independent review of the reports listed below relating to the environmental condition of Lot 301, which formed part of the former Boral Timber site at Wingham, and have produced this Summary Site Audit Report in support of Site Audit Statement WRR98/1, which is attached to and must be read with this Report.

The former Boral Timber site at Wingham comprised Lots 246, 270 and 310 and a parcel of land referred to as the "closed road". I have previously reviewed a number of reports relating to the environmental condition of the three lots and the closed road. The assessment of Lots 246 and 270 and the closed road demonstrated that no significant contamination was present, but some petroleum hydrocarbon contamination was identified on Lot 301. In my Summary Site Audit Report dated 10 November 1999, I concluded as follows:

"I agree with IT Environmental's conclusion that the levels of chemical substances identified in the soil on Lots 270 and 246 and on the closed road presents no significant risk to the health of occupiers of the site and that no remediation is indicated in this respect. Lots 270 and 246 can be safely developed for use as a retirement village.

I agree that remediation of the petroleum hydrocarbons identified on Lot 310 is required to be undertaken if this Lot is to be used for sensitive purposes. No remediation would be required to be undertaken if Lot 301 were to be continued to be used for commercial or industrial purposes."

It has been decided subsequently that Lot 301 should be developed for residential purposes and that the identified petroleum hydrocarbon contamination should be remediated and the site validated. This Summary Site Audit Report addresses the program of remediation and validation undertaken on Lot 301.

A list of references, source publications, abbreviations and acronyms is contained at the end of the report. In accordance with requirements of NSW EPA, in completing this Summary Site Audit Report I have completed the "Checklist for Site Auditors", which is kept on my file.

Purpose of the Site Audit

The purpose of the Site Audit was to determine the nature and extent of any contamination on the land and the nature and extent of the investigation and remediation, and what, if any investigation or remediation remains necessary before the land is suitable for the proposed use.

I understand that the Summary Site Audit Report is required for commercial purposes only at this time, but may be used in support of a development application at a later time. In this respect, the Audit is not a Statutory Audit.

The site audit process

The Site Audit process comprises an independent review by a Site Auditor accredited by

the NSW Environment Protection Authority (EPA) of one or more reports of investigation, remediation and validation of a contaminated or potentially contaminated site that have been prepared by an environmental consultant. The audit process includes, firstly, preparation of a Summary Site Audit Report and the "Checklist for Site Auditors using the EPA Guidelines for the NSW Site Auditor Scheme 1998", which summarises the results reported by the consultant, and, finally, preparation of a Site Audit Statement.

This Site Audit has been carried out by Bill Ryall who is a Site Auditor accredited by the NSW Environment Protection Authority (Accreditation No. 9809), who trades through Contamination Management Pty Ltd.

Site Audits are carried out by the environmental consultant by reference to guidelines published by the NSW EPA and if the reports prepared by the consultant are in substantial conformance with the guidelines the Site Auditor is entitled to accept the results and conclusions stated therein and to complete the Summary Site Audit Report and to issue a Site Audit Statement and/or to provide other advice based on the results and conclusions stated in the report/s by an environmental consultant.

The Site Auditor does not normally carry out any independent sampling or chemical analyses of soil, fill, groundwater or other media on the subject site, but relies on the testing and reporting that has been carried out by the environmental consultant if it has been demonstrated to be of adequate reliability by reference to quality indicators listed in the NSW EPA's guidelines.

It is expressly recognised that even when a qualified environmental consulting firm has substantially followed guidelines published by the NSW EPA that unidentified contamination or sub-surface structures may remain present on a site and that the processes of investigation, remediation and validation are statistically based and that no liability is accepted by the Site Auditor for unidentified contamination or sub-surface structures subsequently found to be present on a site which has been subjected to investigation, remediation and validation processes that are in substantial conformance to guidelines published by the NSW EPA.

This Summary Site Audit Report and the attached Site Audit Statement have addressed the suitability of the site for the proposed purpose in its state at the time of the consultant's investigation and/or remedial works and has not addressed the suitability of fill materials or soil for off-site disposal or for any other purpose. Should the site be used for any other purpose in the future, its environmental condition should be assessed in accordance with appropriate guidelines published by NSW EPA.

Reports reviewed

The reports I reviewed in preparing this Summary Site Audit Report were:

1. Remedial Action Plan, Lot 310, Former Boral Timber Site, Lot 310, Murray Road, Wingham, NSW" by IT Environmental (Australia) Pty Ltd (ITE) dated 19 February 2001.

2. "Excavation and Validation of Hydrocarbon 'Hotspot' Lot 310, Former Boral Timber Site, Murray Road, Wingham, NSW" by ITE dated 18 December 2001.

Site identification

The subject site is located at Murray Road, Wingham, as shown on ITE's Figure 1, which is contained in Attachment 1 to this Report. The site is essentially rectangular in shape and has an approximate area of 8170 square metres.

The site is identified as Lot 310 in DP 976294 and is located in the Greater Taree Council local government area. The present zoning of the site was not addressed by ITE.

2. Remedial Action Plan

Site characterisation

The RAP presented satisfactory documentation relating to the site identification, history of use of the site, site condition, geology and hydrogeology and the environmental condition of the site, which had been described in acceptable detail in the environmental investigation report.

Identified contamination

The contamination identified by ITE comprised medium and heavy fraction petroleum hydrocarbons (referred to by ITE as "TPH", for petroleum hydrocarbons) located in shallow soils within a shed at the south-eastern part of Lot 310. ITE concluded that "The TPH impacted soil is believed to be related to vehicles parked in that area of the shed".

Bo BTEX compounds (benzene, toluene, ethylbenzene, xylenes) or polycyclic aromatic hydrocarbons (PAHs) were identified during the site investigation.

The extent of the contaminated soil was limited, being confined to the surface to soil to a depth of 0.3 m, and petroleum hydrocarbons were not present in samples from the depth range 0.3 to 0.5 m.

Groundwater was not encountered on the site during the investigation or remedial works.

Remediation goals

The goals of the remedial works outlined in the RAP ensured that the site can be used for the proposed low-density residential purposes and that there would be no unacceptable environmental or health impacts during remediation.

The goals are appropriate for the proposed remedial works.

Remediation options and strategy

ITE did not present options for the remedial works and did not satisfy the ANZECC (1992) order of preferred remediation options, which have been adopted by NSW EPA. However, the removal of contaminated soil from the site was justified because the heavy end petroleum hydrocarbons are not amenable to bioremediation processes within a reasonable period of time.

In addition, classification of the soils indicated them to be "inert waste" which could be used at the landfill as cover material.

Scope of the remedial works

The RAP listed in appropriate detail the scope of the remedial works, which comprised excavation, stockpiling and classifying the contaminated material and was commensurate with the nature and extent of the identified contamination and is satisfactory.

The area of contaminated soil was approximately 12.5 m x 7.5 m and extended to a depth of approximately 0.3 m.

Classification of contaminated materials

ITE stated that the classification of the contaminated materials was to be carried out in accordance with the requirements of NSW EPA (1999). This was satisfactory.

Licences and approvals

The RAP did not list any licences and approvals, although landfills in the Greater Taree Council local government area are not required to be licensed by NSW EPA to receive contaminated soil.

Environmental management plan

The RAP presented the general concepts for the Environmental Management Plan (EMP). The concept EMP addressed the following:

- Handling of stockpiled materials;
- Establishment (preparation of the landfarm areas, installation of pollution control measures and safety equipment and establishment of decontamination and truck cleaning facilities);
- Soil management plan (the process for identifying and managing the removal of contaminated soils and identifying natural soils, drainage control, processing of excavated soils, backfilling of excavations and equipment to be used);
- Stormwater management, including sediment control, erection and maintenance of siltstop fences, isolation of existing stormwater drains, diversion of off-site stormwater, settling ponds, handling of water in excavations and disposal of waste water;
- Dust management, including application of water sprays to active earthworks areas, covering of stockpiles and loads, control of access roads, mitigation of dust generation 0078. Summary Site Audit Report. Lot 310, Former Boral Timber Site, Wingham.

during excavation using dust suppression compounds, if required, and minimising excavated areas;

- Noise management, including requirements for equipment and adherence to hours of operation;
- Odour management, including covering and minimising excavation faces, covering of trucks and the use of odour suppressants;
- Site supervision by the Site Superintendent and the contractor's representative; and
- Hours of operation.

Overall, the matters listed in the RAP to be addressed in the remediation contractor's EMP are satisfactory.

Contingency management plan

The RAP did not address contingencies that may be encountered during the remedial works and this was reasonable because of the small scale of the remedial works.

Communications

The RAP listed the names and contact details of personnel responsible for various stages of the remedial works. This was satisfactory.

Long-term site management plan

No requirement for a long-term site management plan was addressed in the RAP. This was satisfactory because of the small scale of the remedial works.

Occupational health and safety plan

The RAP stated that a health and safety plan would be prepared by the remediation contractor.

Site validation criteria

Soils and fill

Site validation criteria for any petroleum hydrocarbons in soils left in place were stated in the RAP to be according to levels listed in NSW EPA (1994) "Contaminated Sites: Guidelines for Assessing Service Station Sites". The criteria listed in the RAP were appropriate for the site.

Soil disposal criteria

Soil to be disposed from the site was listed as being classified according to NSW EPA (1999). This was satisfactory.

Validation Program

Excavations

The strategy for validating that the contaminated materials had been removed from the excavation was outlined in RAP. Sampling was to be undertaken in accordance with the requirements of NSW EPA (1994) from the walls and flors of excavations, from stockpiled materials and from fill materials required to reinstate the site. The frequency of testing proposed in the RAP was satisfactory.

Validation samples from the UST excavation were stated as being analysed for petroleum hydrocarbons, BTEX compounds and lead. Samples of imported fill materials were stated as being analysed for heavy metals, petroleum hydrocarbons, BTEX compounds, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). These chemicals of concern are appropriate for the proposed validation program. Samples were proposed to be analysed in a laboratory accredited by NATA for the specific analyses.

Quality control

The RAP provided an outline of the Data Quality Objectives (DQOs) required to be achieved for the validation program. The RAP addressed sample collection methods, preservation, decontamination, the number and types of field and laboratory quality control samples, transport or documentation requirements.

Reporting

The RAP proposed that only a final validation report would be prepared and no documentation would be produced during the remedial works. This is satisfactory given the small scale of the proposed remedial works.

Audit opinion

It is my opinion that the RAP substantially met the requirements of NSW EPA (1997).

Based on the information provided in the RAP, it is my opinion that the proposed remedial works were capable of being completed and were technically and environmentally justified.

3. Remedial works and validation program

Introduction

The Validation Report presented satisfactory documentation relating to the site identification, history of use of the site, site condition, geology and hydrogeology and environmental condition of the site, which had been described in acceptable detail in the reports reviewed previously.

Objectives

The objectives of the Validation Report were stated to "...excavate and stockpile hydrocarbon impacted soil, to validate the walls and floors of the excavations to NSW EPA (1994) criteria and to indicate that the site as a whole is suitable for low density residential development".

The objectives for the validation program were satisfactory.

Scope of work

To achieve the objectives, ITE listed tasks that were completed as follows:

- Excavation and stockpiling of hydrocarbon impacted soil;
- Collection and analysis of samples for quality control and validation purposes from the base and walls of the excavation;
- Sampling and analysis of excavated material at a rate of 1 per 25 cubic metres for petroleum hydrocarbons; and
- Preparation of a Validation Report documenting the above and providing any recommendations that were required.

The scope of work listed in the Validation Report was satisfactory to achieve the objectives of the remedial works.

Health & Safety Plan

The Validation Report did not comment on the health and safety plan implemented during the remedial works and I have not sighted this document.

Excavation of contaminated soil

Approximately 30 cubic metres of contaminated soil, identified by visual and olfactory means was excavated and stockpiled on a concrete pad under cover on the site.

The Validation Report did not state the identity of the contractor employed for the remedial works.

Classification of excavated soil

Excavated soil was sampled at the rate of 1 per 25 cubic metres for analysis for petroleum hydrocarbons, BTEX compounds (benzene, toluene, ethylbenzene, xylenes), polycyclic aromatic hydrocarbons (PAHs) and the heavy metals (arsenic, cadmium, total chromium, hexavalent chromium, copper, lead, mercury and zinc).

Classification was stated as being made according to NSW EPA (1999), but details of the classification were not provided in the Validation Report. However, inspection of the laboratory reports verified ITE's classification.

0078. Summary Site Audit Report. Lot 310, Former Boral Timber Site, Wingham.

Reinstatement of the excavation

The excavation was not reinstated. This was satisfactory in view of its shallowness.

Validation criteria

Chemicals to be analysed

For validation purposes, the Validation Report stated that samples were analysed only for petroleum hydrocarbons to meet levels listed in NSW EPA (1994) "Contaminated Sites: Guidelines for Assessing Service Station Sites".

Suitability of the site criteria

The site criteria adopted by ITE for validation purposes for the protection of the health of occupiers of the site are suitable.

Validation sampling and analysis

Sample locations

The locations of validation samples adopted by ITE were as stated in the RAP, in accordance with the requirements of NSW EPA (1994), and were shown on ITE's Figure 2 (Attachment 1).

Sample depths

The Validation Report was not specific on the depths from which samples for validation purposes were collected other than "Following removal of impacted material, validation samples were collected from the walls and base of the excavation...".

Sample collection methodology

Samples were stated as being collected with new neoprene gloves and were transferred into new glass jars and were labelled and placed on an ice-filled cooler for transport to the laboratory.

For the validation program, discrete samples were only employed and no composite samples were used.

Decontamination

No decontamination of sampling equipment was required for the validation program.

Documentation

Validation samples were collected on 19-22 February and 22 March 2001 and sent to the laboratories in two batches. Chain of custody documentation accompanied each batch and 0078. Summary Site Audit Report. Lot 310, Former Boral Timber Site, Wingham.

confirmed that the samples were received within three days of sample collection. Samples for classification of the excavated soil stockpiled on the site were collected on 8 May 2001.

The laboratories indicated that the samples were received chilled and intact.

Dates of receipt, extraction and completion of chemical analyses were reported by the laboratory, as noted below. Inspection of the laboratory reports sheets indicated that all samples were analysed within 10 days and indicated that holding times appropriate for each analyte were achieved.

Relevant dates for the validation program and stockpile classification were as follows:

Date collected	Date received	Date extracted	Date analysed	Date reported	Laboratory
19-22/2/01	22/2/01	26/2/01	27/2/01	5/4/01	ALS
22/3/01	27/3/01	26/28/3/01	28/3/01	29/3/01	ALS
19-22/2/01	22/2/01	not reported	not reported	23/2/01	Gribbles
8/5/01	8/5/01	9/5/01	9/5/01	14/5/01	ALS

Field screening analysis

Field screening for the presence of volatile organic compounds was carried out by ITE using a photoionisation detector (PID). Certificates documenting the calibration were provided in the Validation Report for 20 February 2001 and for 22 March 2001. However, I assume the latter date should read 22 February 2001 to correlate with the dates of sampling listed elsewhere in the report.

The make and model of the PID and the energy of the lamp source were not stated in the Validation Report. These omissions are not optimal, but the calibration sheets indicate that the PID was calibrated on a daily basis.

It is noted that the Validation Report indicated that the PID did not respond well to the petroleum hydrocarbons, which were mostly medium and heavy fractions.

Chemical analysis

Soil samples for validation purposes were analysed for the following substances:

- Petroleum hydrocarbons; and
- BTEX compounds.

To classify contaminated fill material from the excavation for disposal to landfill, three samples from the stockpile were analysed, in addition to the above, for:

- Heavy metals;
- Petroleum hydrocarbons;
- BTEX compounds;
- PAHs
- OCPs; and

0078. Summary Site Audit Report. Lot 310, Former Boral Timber Site, Wingham.

• Phenoxyacid herbicides.

Samples were analysed by ALS (primary laboratory) and Gribbles (secondary laboratory). Both laboratories are certified by NATA to carry out the analyses for organic compounds.

The methods employed by ALS and the Practical Quantitation Levels (PQLs), were listed in the Validation Report and were in compliance with ANZECC (1996) and NEPC (1999c) and were satisfactory. The methods employed by ALS and the practical quantitation levels (PQLs) were as follows:

Analyte	Reference method	Description	POL
heavy metals mercury petroleum hydrocarbons	USEPA 6010 USEPA 6020	ICP-AES ICPMS	(mg/kg) 0.5 0.05
(C10-C36) petroleum hydrocarbons	Tumbler/USEPA 8015A	GC/MS/FID	2-100
(C6-C9)	Tumbler/USEPA 8260A	P&T/GC/MS	0.5
PAHs	USEPA 8270C	GC/MS	0.5 - 1
BTEX	USEPA 5030A, 8260A	P&T/GC/PID/FID	0.2 -1
OCPs	Tumbler/USEPA 8270B	GC/MS	0.5 - 1

Analyses for PAHs using the specific method listed above analysed for 16 priority PAH compounds (naphthalene, acenapthylene, acenapthene, fluorene, phenanthrene, anthracene, fluorapthene, pyrene, benz(a)anthracene, chrysene, benzo(a)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1.2.3.cd)pyrene, dibenz(a.h)anthracene, benzo(g.h.i)pyrelene.

Analyses for OCPs listed above analysed for 14 compounds (alpha-, beta-, gamma- and delta-BHC, heptachlor, aldrin, heptachlor epoxide, endosulfan 1 and 2, 4.4'-DDE, dieldrin, endrin, 4.4'-DDD, endosulfan sulfate and 4.4'-DDT) and eifght OPPs (methanesulfonate methyl and ethyl, dichlorvos, cis- and trans-isosafrole, safrole, dimethoate and diazinon).

The methods employed by ALS for chemical analysis of the samples were certified by NATA and were in accordance with the requirements of ANZECC (1996) and NEPC (1999c) and were satisfactory.

Field quality control

ITE employed the following procedures which comprised the Quality Control Plan for the project:

- use of experienced personnel for the collection of samples;
- appropriate methodology for the collection and handling of soil samples;
- preparation of field duplicate and field spilt samples for interlaboratory analysis; and
- use of a NATA certified laboratories, employing appropriate methods to analyse the field samples.

The above procedures were satisfactory.

Formal Data Quality Objectives (DQOs) were adopted by ITE, but no actions were 0078. Summary Site Audit Report. Lot 310, Former Boral Timber Site, Wingham.

specified to be undertaken if the analytical results did not meet the expected DQOs. It is noted that the DQOs were not in accordance with those listed in NSW EPA (1997).

Field duplicate samples

For petroleum hydrocarbons, where reported, Relative Percent Differences (RPDs) for analyses reported for original and duplicate samples ranged from 38 to 82 % for the C29 to C36 fractions. No C6 to C28 fractions were reported in either the original or duplicate quality control samples. The elevated RPDs were explained by ITE as being due to reported results close to the PQLs. However, the matter is not significant because in final validation samples concentrations of petroleum hydrocarbons were either less than the PQLs or were less than the site criteria.

No BTEX compounds were reported in any of the quality control samples.

Laboratory quality control

The laboratories reported the results of their internal quality control procedures for each batch of soil samples analysed. As noted above, the analytical methods employed were appropriate for the investigation and were in accordance with methods certified by NATA.

The detection limits and PQLs for all analytes were compatible with the DQOs that are required for the project.

The quality control program implemented by ITE was of adequate scope, but the discussion of the quality control program was brief and was not in accordance with the requirements of NSW EPA (1997). I have made an independent assessment of attainment of the project DQOs by reference to the Data Quality Indicators (precision, accuracy, representativeness, completeness and comparability), as required in NSW EPA (1997).

The quality control program reported by ALS consisted of the following:

- Analyses of method blanks for all analytes;
- Surrogate recoveries for volatile petroleum hydrocarbons, BTEX compounds and PAHs; /
- Single and duplicate control samples for BTEX compounds and PAHs;
- Matrix spike and matrix spike duplicate analyses for BTEX compounds, PAHs and metals;
- Laboratory control samples for metals; and
- Laboratory duplicate analyses for all analytes.

The quality control program reported by Gribbles consisted of the following:

- Analyses of method blanks for all analytes;
- Surrogate recoveries for volatile petroleum hydrocarbons and BTEX compounds;
- Matrix spike and matrix spike duplicate analyses for petroleum hydrocarbons, BTEX compounds;
- Laboratory control samples for metals; and

0078. Summary Site Audit Report. Lot 310, Former Boral Timber Site, Wingham.

• Laboratory duplicate analyses for all analytes.

Method blank analyses were acceptable as none of the substances analysed for were detected for any of the analytes.

For metals, single and duplicate control sample recoveries were within the range 89 to 111 %, which were within acceptable control limits. Matrix spike and matrix spike duplicate recoveries were within the range 77 to 112 %, which were within acceptable control limits. No analyses of laboratory duplicate samples were carried out so that the precision of laboratory analyses could not be determined by this method.

For petroleum hydrocarbons and BTEX compounds, single and duplicate control sample recoveries ranged from 88 to 108 %, which were within acceptable control limits. Surrogate recoveries for volatile fractions and BTEX compounds ranged from 74 to 118 %, which were within acceptable control limits. Matrix spike and matrix spike duplicate recoveries ranged from 93 to 109 %, which were within acceptable control limits and indicated no significant matrix interference. RPDs of analyses of duplicate samples ranged from 0 to 15 %, which were within acceptable control limits.

For PAHs, single control and duplicate sample recoveries ranged from 69 to 85 %, which were within acceptable control limits. Surrogate recoveries ranged from 93 to 112 %, which were within acceptable control limits. Matrix spike and matrix spike duplicate recoveries ranged from 71 to 82 %, which were within acceptable control limits. No analyses of duplicate samples were reported and this method could not be used to assess the precision of the analyses.

OCPs and phenoxyacid herbicides were analysed for only by Gribbles, who reported results of only method blank, spike and duplicate analyses. It is my opinion that the results reported by Gribbles were not of high demonstrated reliability and are suitable only for confirmation purposes. No OCPs were reported in the investigation or validation stages and it is safe to conclude that the non-detect results reported by Gribbles confirm that OCPs are not of concern on Lot 310.

Equipment rinse blanks

No equipment rinse blanks were employed for the validation program.

Interlaboratory quality control analyses

Interlaboratory quality control analyses were reported by ITE only for petroleum hydrocarbons. The RPD of the interlaboratory duplicate analysis was 38 % for detected petroleum hydrocarbons, which indicated acceptable precision and accuracy.

Consultant's data validation

ITE presented a very brief commentary of the laboratory quality control results, but this was not of the standard reported for the investigation stage of the project, and each of the

Data Quality Indicators (precision, accuracy, representativeness, completeness and comparability) was not addressed in accordance with the requirements of NSW EPA (1997).

ITE concluded "Based on the laboratory quality control results, the laboratory data provided is considered valid and acceptable". It is my opinion, however, that without assessing the quality control data I relation to all DQIs, ITE were not entitled to make the above conclusions. I have assessed the reliability of the analytical data, below.

Assessment of results of QC

Based on the results of the documented field and laboratory procedures and the analyses of QC samples submitted by ITE and the results of the internal laboratory QC analyses reported by the laboratories, it is my opinion that the results reported for the validation samples by ALS can be considered in terms of accuracy and precision to have adequate reliability for the purposes of the present validation program. The results reported by Gribbles have lesser reliability and are suitable only for confirmation purposes.

In terms of completeness, all results reported by ALS can be considered to have adequate reliability to be employed in assessing the environmental condition of the subject site. In terms of the representativeness, it is my opinion that the results reported by ALS can be relied on to provide an acceptable indication of the environmental condition of the fill, soil and groundwater on the site. In terms of comparability, it is my opinion that the results reported by ALS for each sampling event can be compared satisfactorily as samples were collected, preserved, handled and analysed in the same manner for each sampling event and any temporal differences were not significant.

Results of the validation process

Field screening analyses and odours

The results of screening analyses of samples collected for validation purposes with the PID were not reported by ITE.

ITE did not report on the presence of odours in the soil remaining after removal of the contaminated soil. However, given that the final validation samples did not contain any detectable petroleum hydrocarbons or BTEX compounds, it is safe to conclude that no significant odours were present in the excavation.

Validation of excavation

Samples of soil for validation purposes were collected from the walls and floors of the excavation at locations shown on ITE's Figure 2 and the results of chemical analyses were reported in ITE's Table 1. The final validation samples contained no detectable petroleum hydrocarbons or BTEX compounds.

Disposal of contaminated soil

A total of 57.5 t of contaminated soil was classified as inert waste and was disposed from the site to the landfill operated by Resource Recovery at Buckets Way, Taree. The Validation Report contained a facsimile from Resources Recovery confirming that this material had been accepted into their landfill.

Consultant's conclusion

ITE concluded that "Based on the field observations and laboratory results presented in this report, and in conjunction with reports from previous assessment and validation work, IT Environmental (Australia) Pty Ltd considers that the site is suitable for low density residential development".

4. Audit opinion

Based on the results presented in the environmental investigation and validation reports, and their substantial compliance with guidelines made by NSW EPA, it is my opinion that it is safe to conclude that the site is suitable for the proposed residential development and that no conditions are required to be noted on Site Audit Statement WRR98/1, which relates to the site.

Contamination Management Pty Ltd

Rya

W R Ryal¹ Accredited Site Auditor No 9809 (NSW EPA)

APPENDIX 1 – REFERENCES & SOURCE PUBLICATIONS

ANZECC, 1992. Australian Water Quality Guidelines for Fresh and Marine Waters. Australian and New Zealand Environment and Conservation Council.

ANZECC/NHMRC, 1992. Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites. Australian and New Zealand Environment and Conservation Council / National Health and Medical Research Council.

ANZECC/NHMRC, 1992. Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites. Australian and New Zealand Environment and Conservation Council and National Health and Medical Research Council.

Australian Standard AS 4482.1-1997. Guide to sampling and investigation of potentially contaminated soil: Part 2: Non-volatile and semi-volatile substances. Standards Australia.

Australian Standard AS 4482.1-1999. Guide to sampling and investigation of potentially contaminated soil: Part 2: Volatile substances. Standards Australia.

Imray, P and G Neville, 1993. Approaches to the Assessment and Management of Asbestos Contaminated Soils. Second National Workshop on the health risk Assessment and management of Contaminated Sites, South Australian Health Commission.

MHSPE, 1994. Environmental Quality Objectives in the Netherlands. Ministry of Housing, Spatial Planning and the Environment.

NEHF, 1998. Health-Based Soil Investigation Levels. National Environmental Health Forum Monographs. Soil Series No 2. National Environmental Health Forum.

NEPC, 1999(a). Guideline on the Investigation Levels for Soil and Groundwater. Schedule B(1). National Environmental Protection Measure.). National Environmental Protection Council.

NEPC, 1999(b). Guideline on Data Collection, Sample Design and Reporting. Schedule B(2). National Environmental Protection Measure.). National Environmental Protection Council.

NEPC, (1999c). Guideline on Laboratory Analysis of Potentially Contaminated Soils. Schedule B(3). National Environmental Protection Measure.). National Environmental Protection Council.

NSW EPA, 1994. Contaminated Sites: Guidelines for Assessing Service Station Sites. NSW Environment Protection Authority.

NSW EPA, 1995. Contaminated Sites: Sampling Design Guidelines. NSW Environment Protection Authority.

NSW EPA, 1996. Environmental Guidelines: Solid Waste Landfills. NSW Environment Protection Authority.

NSW EPA, 1997. Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites. NSW Environment Protection Authority.

NSW EPA, 1998. Contaminated Sites. Guidelines for the NSW Site Auditor Scheme. NSW Environment Protection Authority.

NSW EPA, 1999. Environmental Guidelines: Assessment, Classification & Management of Liquid & Nonliquid Wastes. NSW Environment Protection Authority.
APPENDIX 2 – GLOSSARY OF ABBREVIATIONS AND ACRONYMS

ACM. Asbestos containing material(s). ANZECC. Australian and New Zealand Environment and Conservation Council. AHD. Australian Height Datum. APHA. American Public Health Association. ASS. Acid Sulfate Soil. BaP. Benzo(a)pyrene (a PAH). BTEX. Benzene, toluene, ethylbenzene and xylenes. CCA. Copper chrome arsenate. DQOs. Data Quality Objectives. DQIs. Data Quality Indicators. EPA. New South Wales Environment Protection Authority. EMP. Environmental Management Plan. HASP. Health and Safety Plan. HRA. Health Risk Assessment. NEHF. National Environmental Health Forum. NEPC. National Environmental Protection Measure. NSW EPA. New South Wales Environment Protection Authority. OCPs. Organochlorine pesticides. OH&S. Occupational Health & Safety. OPPs. Organophosphorus pesticides. PAHs. Polynuclear Aromatic Hydrocarbons. PCBs. Polychlorinated biphenyls. PID. Photoionisation detector. PQL. Practical quantitation level. PSH. Phase Separated Hydrocarbon. QA. Quality Assurance. QC. Quality Control. RAP. Remedial Action Plan. **RPD.** Relative Percent Difference. SAP. Sampling and Analytical Plan. SMP. Soil or Site Management Plan SVOCs. Semi-volatile Organic Compounds. SWL. Standing Water level. UCL. Upper Confidence Limit (on mean). USEPA. United States Environment Protection Agency. UST. Underground Storage Tank. VOC. Volatile Organic Compound. Terms relating to chemical analysis methods: AES. Atomic emission spectrometry.

CV-AAS. Cold vapour atomic absorption spectrometry GC/ECD. Gas chromatography/electron capture detector. GC/FID. Gas chromatography/flame ionisation detector. GC/NPD. Gas chromatography/nitrogen/phosphorus detector. CG/MS. Gas chromatography/mass spectrometry. GC/PID. Gas chromatography/photoionisation detector. ICP Inductively coupled plasma. OES. Optical emission spectrometry. P&T. Purge and trap.

<u>Units:</u>

ha. hectare. km. kilometre. m. metre. mg/kg. milligrams/kilogram. ppm. parts per million. mg/L. milligrams/litre. µg/L. micrograms/litre. t. tonne.

0078. Summary Site Audit Report. Lot 310, Former Boral Timber Site, Wingham.

Attachment 1

Supporting information from validation program Figures

17

į

24.

Prepared for:

Boral Limited Level 39, AMP Centre 50 Bridge Street SYDNEY NSW 2000

18 December 2001 Project Reference: J109264B

Prepared by:

IT Environmental (Australia) Pty Ltd 17 Forrester Street, Kingsgrove 2208 New South Wales, Australia

Written/Submitted by:

Alison Packwood
 Environmental Scientist

IT Environmental (Australia) Pty Ltd ABN 89 003 931 057 Tel: (02) 9502 4844, Fax: (02) 9502 2105 Reviewed/Approved by:

Matthew Bennett Project Manager

the figroup

Record of Distribution

No. of copies	Report File Name	Report Status	Date	Prepared for:	Initials
4	J109264B-R03	Final	18 December 2001	Mr Peter Allcorn, Boral Limited	MIS
1	J109264B·R03	Final	18 December 2001	Mr Bill Ryall, Site Auditor, Contamination Management Pty Ltd	
1	J109264B-R03	Final	18 December 2001	IT Environmental (Australia) Pty Ltd	

Table of Contents

Execut	ive Su	nmary iii
1	Introd	uction1
	1.1	Background1
	1.2	Objectives1
	1.3	Scope of Works1
2	Backg	round Information 2
	2.1	Site Identification2
	2.2	Previous Investigations2
	2.3	Proposed End Land Use3
	2.4	Site Geology and Hydrogeology3
	2.5	Extent and Distribution of Contaminants3
3	Valida	tion Strategy 4
	3.1	Site Validation Criteria4
		 3.1.1 Criteria for Validation of Soils
		3.1.3 Fill Validation Criteria
		3.1.4 Data Quality Objectives
	3.2	METHODOLOGY
		3.2.2 Validation of Excavation
		3.2.3 Characterisation of Soil for Offsite Disposal
		3.2.5 Disposal
4	Resul	ts 8
	4.1	Laboratory Analysis Results
		4.1.1 Excavation Validation Samples
		4.1.2 Excavated Material
	4.2	QA/QC Results
5	Sumn	nary and Conclusions 10
6	Refer	ences 11

the Gigroup

List of Attachments

TABLES

- Table 1Validation Soil Analytical Results Total Petroleum Hydrocarbons (TPH)
- Table 2Stockpile Soil Analytical Results TPH, Benzene, Toluene, Ethylbenzene and Xylenes
(BTEX)
- Table 3Stockpile Soil Analytical Results Polycyclic Aromatic Hydrocarbons (PAHs) and
Metals
- Table 4Relative Percent Differences (RPDs) TPH

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan and Sample Locations (20/2/2001 and 22/3/2001)

APPENDICES

- Appendix A Site Photographs
- Appendix B Laboratory Reports and Chain of Custody Documentation
- Appendix C Correspondence
- Appendix D Calibration Record Sheets
- Appendix E Soil Disposal Record

Executive Summary

IT Environmental (Australia) Pty Ltd (*IT*) were commissioned by Boral Limited (Boral) to carry out excavation and validation works at Lot 310 of the former Boral Timber site on Murray Road, Wingham NSW.

The objectives of the validation were to excavate hydrocarbon impacted soil, to validate the walls and floors of the excavations to NSW EPA (1994) criteria and to determine whether the site is suitable for divestment as low density residential land.

A previous environmental site assessment (ESA) (*IT*, 1999b) indicated that one isolated area at the site required remediation and validation, where hydrocarbon impact was present, possibly related to parking vehicles during site operations. The ESA report concluded that apart from this isolated hydrocarbon impacted area, the site was suitable for low density residential development.

Following excavation of impacted material, validation samples were collected from the walls and base of the excavation. All samples were analysed by a NATA registered laboratory for total petroleum hydrocarbons (TPH).

Analysis of validation samples collected on 20 February 2001 indicated that further excavation was necessary. Results from the analysis of validation samples collected on 22 March 2001 were all below the nominated NSW EPA criteria.

Approximately 30m³ of material (in-situ) was excavated. This was then stockpiled on site for characterisation for offsite disposal. At the time of excavation, results from one stockpile sample indicated that the TPH concentration exceeds NSW EPA (1999) solid waste criteria.

Analysis of stockpile samples collected on May 2001 indicated that all results met the inert waste criteria according to the NSW EPA (1999) waste guidelines. The stockpile of approximately 50m³ volume and a weight of 57.5 tonnes was removed on 16 October 2001 and transported to Bucketts Way Landfill Depot operated by Greater Taree City Council. Backfilling of the excavations was not undertaken during the validation works.

Based on the field observations and the laboratory results presented in this report and in conjunction with previous reports on assessment and validation work at the site, *IT* considers that the site is suitable for residential development.

the Gigroup

1 Introduction

1.1 Background

IT Environmental (Australia) Pty Ltd (*IT*) were commissioned by Boral Limited (Boral) to carry out excavation and validation works on Lot 310 of the former Boral Timber site in Wingham, NSW (Figure 1).

The work undertaken at the site was based on the results of an environmental site assessment (ESA) reported to Boral by *IT* in November 1999 (Ref: *IT* 1999b) which identified one isolated area of hydrocarbon impacted soil located in the south western corner of Lot 310. The work was undertaken in accordance with a remedial action plan (RAP) prepared for Boral by *IT* in February 2001 (Ref: *IT* 2001).

The ESA report (*IT*, 1999b) concluded that apart from the isolated hydrocarbon impacted area, the site (Lot 310) was suitable for low density residential development.

An isolated area of arsenic impact was identified at sample location L310-TH10 (Figure 2) during a previous investigation of the site (Fluor Daniel GTI, 1998). Further assessment of this impact involving a number of 'step-out' samples (Fluor Daniel GTI (1999), concluded that the impact had been delineated, and that the 95% upper confidence limit (UCL) for arsenic was below the NSW EPA (1998) 'residential' assessment criteria. It was concluded that no further assessment or remediation of the isolated arsenic impact was required.

Hydrocarbon impacted soil excavated during remediation and validation of a former underground storage tank (UST) area on an adjacent parcel of land (Lot 270, Figure 2) owned by Boral (Fluor Daniel GTI, 1999), was landfarmed on a concreted area of Lot 310. This material was validated to below NSW EPA (1994) sensitive landuse criteria, and was considered suitable for reuse on site (*IT*, 1999a).

1.2 Objectives

The objectives of the current remediation and validation works were to excavate and stockpile hydrocarbon impacted soil, to validate the walls and floors of the excavations to NSW EPA (1994) criteria and to indicate that the site as a whole is suitable for low density residential development.

1.3 Scope of Works

To achieve the objectives the following work scope was undertaken for the remediation works:

- Excavation and stockpiling of hydrocarbon impacted soil. Backfilling of the excavation was not included;
- Collection and analysis of validation samples and appropriate QA/QC samples from the excavation walls and base for TPH;
- Sampling and analysis of excavated material exceeding a rate of 1 per 25m³ of material for total petroleum hydrocarbons (TPH); and
- Preparation of a report describing the results of the validation sampling and recommendations for remediation of excavated soil, if required.

2 Background Information

2.1 Site Identification

The site is located on Murray Road in Wingham (Figure 1) in the south eastern corner of a block of land owned by Boral. It comprises Lot 310 in DP 976294, and has an area of approximately 8170m². There is a large open ended shed located in the south western corner of the site.

The area of the site requiring remediation is restricted to isolated hydrocarbon impacted soil encountered in a soil sample taken from the south western corner of the shed during an ESA previously conducted by *IT (IT* 1999b). Analysis of samples from the remainder of the site indicated that apart from the isolated hotspot, the site was suitable for unrestricted use.

2.2 **Previous Investigations**

Previous investigations of the former Boral Timber site identified an arsenic hotspot on Lot 310, and a TPH hotspot on Lot 270, which is adjacent to Lot 310. Excavated TPH impacted soil from Lot 270 was subsequently landfarmed on Lot 310. These activities are outlined below.

Arsenic Hotspot

- An arsenic hotspot was identified on Lot 310 (at sample point L310-TH10) during the initial ESA of the former Boral Timber site at Wingham (Fluor Daniel GTI 1998).
- During fieldwork conducted in November 1998 (Fluor Daniel GTI 1999), four 'step-out' samples were collected from within a 5m radius of the arsenic impacted area. A further four 'step-out' samples were collected approximately 10m from L310-TH10 to a maximum depth of 0.5m.
- Laboratory analysis of these samples indicated that arsenic concentrations were below the NSW EPA (1998) residential assessment criteria.
- Statistical analysis of the four 'step-out' samples collected from within a 5m radius, along with the original arsenic impacted sample indicated that the 95% UCL for arsenic in the vicinity of sample point L310-TH10 was below the NSW EPA (1998) residential assessment criteria (Fluor Daniel GTI 1999). Therefore no further assessment or remediation in relation to the arsenic hotspot was required.

Landfarm

- TPH impact was identified in the vicinity of a former underground storage tank (UST) on Lot 270, which is adjacent to Lot 310, during the initial ESA at the site (Fluor Daniel GTI 1998).
- The former UST area on Lot 270 was excavated and validated (Fluor Daniel GTI 1999). The excavated hydrocarbon impacted soil was landfarmed in two piles, one located on Lot 270 and one on a concreted area on Lot 310.
- The two landfarms were consolidated into one on Lot 310 in March/April 1999 (IT Environmental 1999b).
- Two samples were collected from the landfarm in August 1999 and analysis indicated that concentrations of TPH and BTEX were below NSW EPA (1994) sensitive landuse criteria and

therefore suitable for reuse onsite. As the material was landfarmed on a concreted area, validation of the footprint was not considered necessary.

2.3 Proposed End Land Use

It is understood that the site is to be divested as suitable for low density residential development.

2.4 Site Geology and Hydrogeology

The site is generally overlain by silty sand topsoil to a maximum depth of 0.5m depth, which is underlain by weathered rock from a depth of 0.3m. Soil encountered during validation work was generally hard silty sand fill with some grey silty sand, overlying bedrock and weathered rock at a depth of between 0.3m and 0.8m.

No groundwater was encountered during the previous ESA conducted by *IT* (*IT*, 1999), or during the remedial works. Some seepage water was encountered during the validation work due to heavy rain prior to fieldwork.

2.5 Extent and Distribution of Contaminants

Contaminants of concern for the current exercise are total petroleum hydrocarbons (TPH). Hydrocarbon impacted soil was encountered in soil sample L310-TH24 ($0 \cdot 0.15m$) (Figure 2) during the previous ESA (*IT* 1999). The deeper sample from this point (L310 – TH24 ($0.3 \cdot 0.5m$)) was within assessment criteria. L310-TH24 was located in the south western corner of the shed in bare ground adjacent to the concrete floor slab.

The TPH in impacted soil is believed to be related to vehicles parked in that area of the shed. The remainder of the site was considered suitable for unrestricted landuse.

3 Validation Strategy

The general remediation strategy involved the excavation of hydrocarbon impacted soil, validation of the excavation and characterisation of excavated soil for possible offsite disposal, in accordance with NSW EPA (1999) waste guidelines. A remedial action plan (RAP) was prepared prior to work commencing (*IT* 2001).

3.1 Site Validation Criteria

3.1.1 Criteria for Validation of Soils

NSW EPA (1994) threshold concentrations for sensitive landuse have been used for comparison with TPH compounds, which have been identified as the only remaining contaminant of concern at the site. Excavation validation criteria are shown in the table below.

Analyte	Excavation Validation Criteria
	(mg/kg)
TPH $(C_6 \cdot C_9)$	65
TPH (C ₁₀ -C ₄₀)	1000

3.1.2 Soil Disposal Criteria

For potential offsite disposal of impacted soil, soil results were compared to the NSW EPA (1999) Environmental Guidelines: Assessment, Classification and Management of Liquid and Non-Liquid Wastes. Tables A3 and A4 from these guidelines form the basis for waste classification of soil to be disposed to landfill.

3.1.3 Fill Validation Criteria

Fill was not imported to the site during the remedial works. Should validation of imported fill be required in the future, appropriate fill validation criteria include NSW EPA (1994) sensitive landuse criteria for hydrocarbons, and NSW EPA (1998) standard residential criteria for metals, PAHs, pesticides and polychlorinated biphenyls. Virgin excavated natural material can be used for filling and does not require validation. However, it is recommended that confirmation that the material is natural be obtained in writing before backfilling.

3.1.4 Data Quality Objectives

A number of data quality objectives were set for the excavation and validation carried out at the site. These included:

- Provide sample integrity and container information on chain of custody (COC) documentation;
- Ensure all samples are dispatched and analysed within the recommended holding times for all analyses;
- Analysis of field duplicates at a frequency of 1 in 10;
- Analysis of field triplicates at a frequency of 1 in 20;
- Analysis of rinsate blanks to determine any contamination from the soil sampling process;

- Review the relative percentage difference (RPDs) for field and laboratory duplicate samples to evaluate whether RPDs for the sample pairs were within acceptable ranges of +/-50% for field duplicates and 20-50% for laboratory duplicates to determine field precision;
- Analysis of method blanks to determine any contamination from the analytical process;
- Analysis of matrix spike, laboratory control sample and duplicate control sample to determine overall efficiency of the method, the effect of the sample matrix on the analytical results, and the accuracy of the method. Recovery data for accuracy, or average recovery, should be in the range 75-125% confirming acceptability;
- Analysis of surrogate spikes and comparison recovery results with documented acceptable control limits of between 70 and 130%; and
- Overall completeness should be a minimum of 95%.

Field QA/QC

Soil sampling was undertaken by Alison Packwood, a qualified environmental scientist.

The photoionisation detector (PID) used for soil vapour screening and soil sampling was calibrated in the field against a standard isobutylene in air gas mixture. The PID response factor was then programmed to adjust readings relative to benzene. Calibration was complete before any field work commenced. PID readings were recorded on field data sheets. Calibration records are provided in **Appendix D**.

New neoprene gloves were worn during soil sampling and were replaced between sample collection. New sample bottles were used for each soil sample. Sample bottles were labelled and identified with the project number, unique sample number and date of collection. Collected samples were placed immediately on ice and dispatched in an ice filled cooler (esky) to the laboratory for analysis. Samples were recorded on a chain of custody form. The chain of custody form accompanied samples upon dispatch to the laboratory for analysis.

Field duplicate soil samples were collected at a ration of 1 duplicate per 10 primary samples. Field interlaboratory triplicate soil samples were collected at a ratio of 1 triplicate per 20 primary samples. A list of the primary soil samples analysed are summarised below:

Soil Sampling

16 primary samples – TPH 2 primary samples – BTEX, PAHs and metals.

Duplicate/triplicate samples were identified sequentially and as a 'QC sample' but were not marked specifically as duplicate/triplicate samples. Two (2) field duplicates and one (1) triplicate soil sample pairs were collected and analysed for TPH. An equipment rinsate and trip blank were collected in the field during soil sampling. The QA/QC samples were collected and analysed as follows:

Soil Sampling conducted on 20 February 2001

QC3/QC3A duplicate/triplicate of V10 TPH

Soil Sampling conducted on 22 March 2001

QCX duplicate of V12

Ref: J109264B.R03

TPH

Laboratory QA/QC

The quality control (QC) testing conducted internally by ALS consisted of analysis method blanks, duplicate samples, laboratory control samples, recovery samples, surrogate spikes and internal standards.

The QC testing conducted internally by GAL consisted of laboratory split duplicates, laboratory reagent blanks, laboratory matrix spike and matrix spike duplicate recovery samples, laboratory control samples and surrogate spikes.

The results of the QC testing are attached with each laboratory report (Appendix B).

3.2 METHODOLOGY

3.2.1 Excavation of Impacted Soil

Impacted material was excavated based mainly on visual and olfactory recognition of hydrocarbon impact, as the heavy-end hydrocarbons involved provided little measurable response by a portable PID, usually responsive to more volatile (light-end) hydrocarbons.

Approximately 30m³ of material (in-situ) was excavated. This was then stockpiled on site for characterisation for possible offsite disposal. The material was stockpiled on a concrete pad under cover.

3.2.2 Validation of Excavation

Following removal of impacted material, validation samples were collected from the walls and base of the excavation. Fieldwork was initially conducted on 20 February 2001, however, analytical results indicated that further excavation was necessary. Further excavation and sampling took place on 22 March 2001. The locations of the validation samples are marked on Figure 2. Excavation walls were validated at a rate of 1 sample per 10m (linear) or better, and the base of the excavation was validated at a rate of 1 sample per 25m² or better.

Four wall and one floor samples were collected and analysed during fieldwork conducted on 20 February 2001. A further five wall and two floor samples were collected and analysed on 22 March 2001.

Two duplicate samples and one triplicate sample were collected overall; QC3 and QC3a (duplicate and triplicate of sample V10) and QCX (duplicate of V12).

Based on the results of the previous site assessment, validation samples were analysed for TPH.

Photographs of the excavation are presented in Appendix A.

3.2.3 Characterisation of Soil for Offsite Disposal

The excavated material was stockpiled on site and sampled at a rate of 1 sample per 25m³ excavated (2 samples, V11 and SP1), to enable classification for offsite disposal.

Based on sampling results from the previous site assessment, the stockpile samples were analysed for TPH.

Samples (SP2 and SP3) were collected from the stockpile in May 2001, and analysed for TPH, BTEX, PAHs and metals. In addition, sample SP2 was tested for the Toxicity characteristic Leaching Potential (TCLP) of lead.

3.2.4 Backfilling of Excavations

Backfilling was not undertaken as part of the scope of work.

3.2.5 Disposal

The stockpile with a volume of approximately 50m³ and a weight of 57.5 tonnes was removed on 16 October 2001. A representative of IT Environmental supervised and recorded the loading and transport of the soil to landfill. The stockpile was transported to Bucketts Way Landfill for disposal as inert waste. A record of disposal is included in **Appendix E**.

4 Results

4.1 Laboratory Analysis Results

All analyses were conducted at NATA registered Australian Laboratory Services (ALS), Smithfield, with the exception of the triplicate sample which was analysed at Gribbles Analytical Laboratories (GAL), Melbourne. GAL are also NATA registered. Laboratory analytical results are summarised in Tables 1-3 and full laboratory reports are included in Appendix B. The results indicate the following:

4.1.1 Excavation Validation Samples

Twelve validation samples (Figure 2) were collected and analysed for TPH. Of the five validation samples collected on 20 February 2001, results were above the nominated criteria for four samples, with TPH (C_{10} - C_{36}) concentrations ranging between 1248 mg/kg to 16595 mg/kg. The results from the sample taken from the western wall of the excavation (V10) were below the nominated criteria (TPH (C_{10} - C_{36}) concentration of 120 mg/kg).

Results from validation samples collected on 22 March 2001 were all below the laboratory's limit of reporting, and were therefore below the nominated validation criteria. The results are summarised in Table 1 and laboratory analytical reports (**Appendix B**).

4.1.2 Excavated Material

Two samples of the excavated and stockpiled material, V11 (20/2/01) and SP1 (22/3/01), were collected and analysed for TPH. The results of these samples were 21,920 and 2,617mg/kg respectively.

Stockpile samples (SP2 and SP3) were collected in May 2001 and analysed for TPH, BTEX, PAHs and metals.

Stockpile samples (SP2 and SP3) collected in May 2001 show that all samples for TPH, BTEX, PAHs and metals meet the inert waste criteria according to the NSW EPA (1999) waste guidelines, with the exception of one metal result for lead in SP2 (12mg/L). The results are summarised in Tables 2 and 3 and laboratory analytical reports (**Appendix B**).

TCLP test result shows a concentration of <0.1mg/L lead in leachate for SP2. The combined total lead concentration (10mg/L) and TCLP (<0.1mg/L) are less than the NSW EPA (1999) inert waste criteria SCC1 (1500mg/kg) and TCLP1 (0.5mg/L) respectively.

4.2 QA/QC Results

A total of two duplicate soil samples and one triplicate soil sample were collected during the excavation and validation works. The results of the relative percentage difference (RPD) calculations between original and duplicate or triplicate samples are presented in Table 2.

One duplicate (QC3) and one triplicate sample (QC3a) were collected from V10, and one duplicate sample (QCX) was collected from V12. Each sample was analysed for TPH.

The RPDs between analytical results for original and duplicate or triplicate samples were generally comparable and within the acceptable range (less than 30%-50%).

A variation was detected for TPH (C_{29} - C_{36}) between V10 and QC3, with a RPD of 82%. This discrepancy is due to the concentration in both samples being near to or below LOR. At concentrations near the limit of reporting, a small variation between the measured concentrations in the sample and the duplicate produces a large RPD.

The laboratory quality results indicate that the quality control adopted by the laboratories during analysis of the samples was satisfactory. An error in the recorded sample extraction date was noted in the ALS Quality Control Report for sample Batch No ES27394, where the extraction date was reported as 26/3/01

Based on the field and laboratory quality control results, the laboratory data provided is considered valid and acceptable. The data quality control results meet the data quality objectives as discussed in Section 3.1.4.

5 Summary and Conclusions

An ESA previously conducted by IT(IT, 1999b) identified an isolated area of hydrocarbon impacted soil in the south western corner of Lot 310. Samples from the remainder of the site indicated that apart from this isolated hydrocarbon impact, the site was suitable for unrestricted landuse.

Approximately 30m³ (insitu) of hydrocarbon impacted soil was excavated and stockpiled on site for characterisation for offsite disposal. No backfilling was undertaken.

Eight validation samples were collected from the walls and base of the final excavation. Analysis of these samples indicated that concentrations of hydrocarbons were below the site validation criteria in all of the samples analysed.

The soil was stockpiled on site to enable characterisation for disposal at a local landfill. The stockpile was tested in May 2001 and characterised as inert waste. In October 2001 the stockpile of approximately 50m³ was removed to the Bucketts Way Landfill Depot, following communication and agreement with Greater Taree City Council.

Based on the field observations and the laboratory results presented in this report, and in conjunction with reports from previous assessment and validation work at the site, IT Environmental (Australia) Pty Ltd considers that the site is be suitable for low density residential development.

IT ENVIRONMENTAL (AUSTRALIA) PTY LTD

6 References

Fluor Daniel GTI (1998) Environmental Site Assessment, Boral Wingham Former Timber Site, dated 12 November 1998 (Reference S9209R02)

Fluor Daniel GTI (1999) Former Boral Timber Site, Wingham, Additional Validation Sampling for Arsenic and Hydrocarbons, Addendum to Report S9209, dated 9 February 1999 (Reference J-10-09264AL03)

IT (1999a) Former Boral Timber Site, Wingham NSW, Validation of Landfarm on Lot 310, Addendum to Report S9209, dated 9 September 1999 (Reference J109264A-L11)

IT (1999b) Additional Environmental Site Assessment, Boral Timber, Wingham. Report prepared by IT Environmental (Australia) Pty Ltd for Boral Limited, dated 3 November 1999 (Reference: J109264B-R01).

IT (February 2001) Remedial Action Plan, Former Boral Timber Site, Lot 310, Murray Road, Wingham NSW. Report prepared by IT Environmental (Australia) Pty Ltd for Boral Limited, dated 19 February 2001 (Reference: J109264B-R01).

NSW EPA (May 1999) Environmental Guidelines: Assessment, Classification and Management of Liquid and Non-Liquid Wastes.

NSW EPA (1998) Guidelines for the NSW Site Auditor Scheme

NSW EPA (1994) Guidelines for Assessing Service Station Sites

the figroup

Statement of Limitations

IT Environmental (Australia) Pty Ltd has conducted work concerning the environmental status of the property which is the subject of this report, and has prepared this report on the basis of that assessment.

The work was conducted, and the report has been prepared, in response to specific instructions from the client to whom this report is addressed and in reliance on certain data and information made available to IT Environmental. The analyses, evaluations, opinions and conclusions presented in this report are based on those instructions, requirements, data or information, and they could change if such instructions etc. are in fact inaccurate or incomplete.

IT Environmental will not update the report and has not taken into account events occurring after the time its assessment was conducted.

IT ENVIRONMENTAL (AUSTRALIA) PTY LTD

the **(igroup**

SOIL ANALYTICAL RESULTS -TOTAL PETROLEUM HYDROCARBONS (TPH) (All results in mg/kg, unless specified in Notes) BORAL WINGHAM (J109264B) VALIDATION TABLE 1

Sample ID				VG	77	V8	67	V10	oc:	QC3A	V12	acx
Sample Collection Date	Date			2/20/01	2/20/01	2/20/01	2/20/01	2/20/01	2/20/01	2/20/01	3/22/01	3/22/01
Sample Analysis Date	Date			2/27/01	2/27/01	2/27/01	2/27/01	2/27/01	2/27/01	2/23/01	3/28/01	3/28/01
Comments									Duplicate of sample V10	Triplicate of sample V10		Duplicate of sample V12
Analytes	Lab Method*	LOR	Nominated Investigation Criteria									
ТРН											And a second sec	
TPH C6 - C9	504 P+T	2	65 ⁽¹⁾	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><5.0</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><5.0</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><5.0</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><5.0</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><5.0</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><5.0</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<5.0	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
TPH C10 - C14	501 FID	50	NE	<lor< td=""><td>367</td><td><lor< td=""><td>125</td><td><lor< td=""><td><lor< td=""><td><20</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	367	<lor< td=""><td>125</td><td><lor< td=""><td><lor< td=""><td><20</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	125	<lor< td=""><td><lor< td=""><td><20</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><20</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<20	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
TPH C15 - C28	501 FID	100	NE	490	4660	714	7080	<lor< td=""><td><lor< td=""><td>47</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>47</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	47	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
TPH C29 - C36	501 FID	100	NE	758	5680	981	9390	120	<lor< td=""><td>82</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	82	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
TPH C10 - C36	501 FID	NA ^(a)	1000 ⁽¹⁾	1248	10707	1695	16595	120	#	129	#	#

Notes:

V = Validation Sample; SP = Stockpile Sample; QC = Quality Control

Sample.

*** = See Lab Methods & Description Table *** = Lab Methods & Description Table *** = Landorstheat randyre concritations are below LOR. *Dimv.* = Parts per million by volume LOR = Limit of Reporting (= Method Detection Limit) NE = Guideline not established NE = Guideline not established of Where results are derived from the summation of selected analytes, LOR can not be determined.

Nominated Investigation Criteria:

⁽¹⁾ NSW EPA (1994) Guidelines for Assessing Service Station Sites: Threshold concentrations for sensitive land use - Soils.

Values in highlighted cells exceed nominated investigation criteria Results

SOIL ANALYTICAL RESULTS -TOTAL PETROLEUM HYDROCARBONS (TPH) (All results in mg/kg, unless specified in Notes) BORAL WINGHAM (J109264B) VALIDATION TABLE 1

·

,

4

Sample ID				V13	V14	V15	V16	V17	V18
Sample Collection Date	Date			3/22/01	3/22/01	3/22/01	3/22/01	3/22/01	3/22/01
Sample Analysis Date	Date			3/28/01	3/28/01	3/28/01	3/28/01	3/28/01	3/28/01
Comments									
Analytes	Lab Method*	LOR	Nominated Investigation Criteria						
TPH									
TPH C6 - C9	504 P+T	2	65 ⁽¹⁾	<lor< td=""><td>< LOR</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	< LOR	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
TPH C10 - C14	501 FID	50	NE	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
TPH C15 - C28	501 FID	100	P	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
TPH C29 - C36	501 FID	100	Ш	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
TPH C10 - C36	501 FID	(a) AN	1000 ⁽¹⁾	#	#	#	#	#	#

Notes:

V = Validation Sample; SP = Stockpile Sample; QC = Quality Control Sample.

*** = See Lab Methods & Description Table *** = All constituent analyte concentrations are below LOR. *ppmv* = Parts per million by volume "ppmv* = Limit of Repting (= Method Detection Limit) LOR = Limit of Repting (= Method Detection Limit) IL = Gulderine not established ⁽⁴⁾ Where results are derived from the summation of selected analytes, LOR can not be determined.

NomInated Investigation Criteria:

⁽¹⁾ NSW EPA (1994) Guidelines for Assessing Service Station Sites: Threshold concentrations for sensitive land use - Solis.

Values in highlighted cells exceed nominated investigation criteria Results

Our Ref: J109264B-T01 (Validation).xls

TOTAL PETROLEUM HYDROCARBONS (TPH) BTEX COMPOUNDS (All results in mg/kg, unless specified in Notes) SOIL ANALYTICAL RESULTS -BORAL WINGHAM (J109264B) STOCKPILE TABLE 2

Sample ID				V11	SP1	SP2	SP3
Sample Collection Date	n Date			2/20/01	3/22/01	5/4/01	5/4/01
Sample Analysis Date	Date			2/27/01	3/28/01	5/11/01	5/11/01
Comments					Stockpile	Stockpile Sample	
Analytes	Lab Method*	LOR	Nominated Investigation Criteria				
HdT							
TPH C6 - C9	EP-071-SS	2	P	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
TPH C10 - C14	EP-071-SS	50	¥	1420	67	<lor< td=""><td>70</td></lor<>	70
TPH C15 - C28	EP-071-SS	100	۳	10400	1130	538	1510
TPH C29 - C36	EP-071-SS	100	¥	10100	1420	229	1780
TPH C10 - C36	EP-071-SS	NA ^(a)	¥	21920	2617	767	3360
BTEX COMPOUNDS	NDS						
Benzene	EP-080-SS	0.2	+	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Toluene	EP-080-SS	0.2	28.8	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Ethylbenzene	EP-080-SS	0.2	60	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Xylene	EP-080-SS	0.4	100	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	ľ			Nombrated Investigation Criteria:	Cuttoria.		

Notes:

V = Validation Sample; SP = Stockpile Sample; QC = Quality Control Sample.

⁽¹⁾ NSW EPA (1999) Environmental Guidelines: Assessment, Classification and Management of Liquid and Non-Liquid Wastes - Inert

Values in highlighted cells exceed nominated investigation criteria

Results

*** = See Lab Methods & Description Table *** = All constituent analyte concentrations are below LOR. *ppnv* = Parts per million by volume LOR = Limit of Reporting (= Method Detection Limit) LOR = Limit of Reporting (= Method Detection Limit) (* Where results are derived from the summation of selected analytes, LOR can not be determined.

Our Ref: J109264B-T01 (Validation), xls

Page 1 of 1

TABLE 3 STOCKPILE SOIL ANALYTICAL RESULTS -POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) and METALS BORAL WINGHAM (J109264B) (All results in mg/kg, unless specified in Notes)

Î

Laboratory ID				-	2
Sample ID				SP2	SP3
Sample Collection Date				5/4/01	5/4/01
Sample Extraction Date				5/9/01	5/9/01
Sample Analysis Date				5/9/01	5/9/01
Comments					
Analytes	Lab Method*	LOR	Nominated Investigation Criteria		
PAHS					
Pyrene	EP-0758-S	0.05	NE	<lor< td=""><td>0.11</td></lor<>	0.11
Phenanthrene	EP-075B-S	0.05	R	<lor< td=""><td>0.07</td></lor<>	0.07
Naphthalene	EP-075B-S	0.05	ME	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Indeno(1,2,3-c,d)pyrene	EP-075B-S	0.05	ų	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Fluoranthene	EP-075B-S	0.05	NE	<lor< td=""><td>0.06</td></lor<>	0.06
Fluorene	EP-075B-S	0.05	NE	<lor td="" <=""><td><lor< td=""></lor<></td></lor>	<lor< td=""></lor<>
Dibenz(a,h)anthracene	EP-075B-S	0.05	NE	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Chrysene	EP-075B-S	0.05	NE	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Benzo(b) & (k)fluoranthene EP-075B-S	EP-075B-S	0.1	NE	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Benzo(g,h,i)perylene	EP-075B-S	0.05	ШN	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Benzo(a)pyrene	EP-075B-S	0.05	0.08	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Benz(a)anthracene	EP-075B-S	0.05	NE	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Anthracene	EP-0758-S	0.05	NE	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Acenaphthene	EP-0758-S	0.05	NE	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Acenaphthylene	EP-075B-S	0.05	NE	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Total PAH's	EP-075B-S	NA ^(a)	NE	#	0.24
METALS					
Arsenic	EG-005T	1	10	ю	2
Cadmium	EG-005T	1	2	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Chromium (Total)	EG-005T	1	NE	12	14
Copper	EG-005T	F	Ш	9	10
Lead	EG-005T	1	10	12	0
Zinc	EG-005T	1	NE	81	15
Mercury	EG-035T	0.1	0.4	<lor< td=""><td>0.3</td></lor<>	0.3
Hexavalent Chromium	EG-050	1	10	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>

Notes:

*** = See Lab Methods & Description Table

"#" = All constituent analyte concentrations are below LOR. "= Analysis not requested

"m" = metres LCR = Linte of Reporting (= Method Detection Limit) NE = Guideline of established NA = Not Applicable

Nominated Investigation Criteria:

^{rth} NSW EPA (1999) Emvironmental Guidelines: Assessment, Classification and Management of Liquid and Non-Liquid Wastes - Inert <u>Results</u> Values In highlighted cells exceed nominated investigati

Values in highlighted cells exceed nominated investigation criteria

^(b) Where results are derived from the summation of selected analytes, LOR can not b determined.

Our Ref: J109264B-T01 (Validation) xls

the Group: A Member of The IT Group

TABLE 4 RPDs BETWEEN ORIGINAL, DUPLICATE AND TRIPLICATE SAMPLES BORAL WINGHAM (J109264B) (All results in mg/kg, unless specified in Notes)

Sample ID				V10	gC3		V10	QC3A		V12	ocx	
Sample Collection Date	n Date			2/20/01	2/20/01		2/20/01	2/20/01		3/22/01	3/22/01	
Sample Analysis Date	Date			2/27/01	2/27/01	RPD (%)	2/27/01	2/23/01	RPD (%)	3/28/01	3/28/01	RPD (%)
Comments					Duplicate of sample V10			Triplicate of sample V10			Duplicate of sample V12	
A and door	Lab	ALS	Gribbles									
Arialytes	Method*	LOR	LOR									
TPH												
TPH C6 - C9	504 P+T	2	5	<lor< td=""><td><lor< td=""><td>0</td><td><lor< td=""><td><5.0</td><td>0</td><td><lor< td=""><td><lor< td=""><td>0</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0</td><td><lor< td=""><td><5.0</td><td>0</td><td><lor< td=""><td><lor< td=""><td>0</td></lor<></td></lor<></td></lor<></td></lor<>	0	<lor< td=""><td><5.0</td><td>0</td><td><lor< td=""><td><lor< td=""><td>0</td></lor<></td></lor<></td></lor<>	<5.0	0	<lor< td=""><td><lor< td=""><td>0</td></lor<></td></lor<>	<lor< td=""><td>0</td></lor<>	0
TPH C10 - C14	501 FID	50	20	<lor< td=""><td><lor< td=""><td>0</td><td><lor< td=""><td><20</td><td>0</td><td><lor< td=""><td><lor< td=""><td>0</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0</td><td><lor< td=""><td><20</td><td>0</td><td><lor< td=""><td><lor< td=""><td>0</td></lor<></td></lor<></td></lor<></td></lor<>	0	<lor< td=""><td><20</td><td>0</td><td><lor< td=""><td><lor< td=""><td>0</td></lor<></td></lor<></td></lor<>	<20	0	<lor< td=""><td><lor< td=""><td>0</td></lor<></td></lor<>	<lor< td=""><td>0</td></lor<>	0
TPH C15 - C28	501 FID	100	20	<lor< td=""><td><lor< td=""><td>0</td><td><lor< td=""><td>47</td><td>n/a</td><td><lor< td=""><td><lor< td=""><td>0</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0</td><td><lor< td=""><td>47</td><td>n/a</td><td><lor< td=""><td><lor< td=""><td>0</td></lor<></td></lor<></td></lor<></td></lor<>	0	<lor< td=""><td>47</td><td>n/a</td><td><lor< td=""><td><lor< td=""><td>0</td></lor<></td></lor<></td></lor<>	47	n/a	<lor< td=""><td><lor< td=""><td>0</td></lor<></td></lor<>	<lor< td=""><td>0</td></lor<>	0
TPH C29 - C36	501 FID	100	20	120	50 (half LOR)	82	120	82	38	<lor< td=""><td><lor< td=""><td>0</td></lor<></td></lor<>	<lor< td=""><td>0</td></lor<>	0

Notes:

V = Validation Sample; SP = Stockpile Sample; QC = Quality Control Sample.

LOR = Limit of Reporting (= Method Detection Limit) NE = Guideline not estabilished na = differences in LOR between tabs result in GAL results being reported which would be below LOR at ALS.

Our Ref: J109264B-T01 (Validation)_xls

the Gigroup

the **ligroup**

Appendix A Site Photographs

Plate 1: Looking north across the excavation which is located at the southern end of the shed on Lot 310.

Plate 2: Looking south across the excavation.

the **(igroup**

Plate 3: Looking to the north western corner of the excavation

Plate 4: Looking to the south western corner of the excavation

Plate 5: Looking to the north eastern corner of the excavation

Plate 6: Looking north east across the excavation

the **Gigroup**

Appendix B Laboratory Reports and Chain of Custody Documentation
ALS Environmental

CERTIFICATE OF ANALYSIS

Batch: Sub Batch: ES27573

0

CONTACT: M BENNETT CLIENT: IT ENVIRONMENTAL (AUST) P/L ADDRESS: 17 FORRESTER STREET

KINGSGROVE NSW 2208

ORDER No.: J109264B PROJECT: BORAL WINGHAM LABORATORY: DATE RECEIVED: DATE COMPLETED: SAMPLE TYPE: No. of SAMPLES: SYDNEY 22/02/2001 05/04/2001 SOIL 7

COMMENTS

Samples analysed on an as received basis. Results reported on a dry

weight basis. This is a re-batch of ES26959/AES26959.

NOTES

This is the Final Report and supersedes any preliminary reports with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: SYDNEY

Address 277-289 Woodpark Road SMITHFIELD NSW 2164 Phone: 61-2-8784 8555

Fax: 61-2-8784 8500 Email: brianw@als.com.au

Signatory

2

LABORATORIES

AUSTRALASIA

Brisbane Melbourne Sydney Newcastle Hong Kong Singapore Kuala Lumpur Auckland AMERICAS Vancouver Santiago Lima

Australian Laboratory Services Pty Ltd (ABN 84 009 936 029)

Page 1 of 3

ьн. У Batch:	ESzia73 1: 0				CE	CERTIFICATE OF ANALYSIS	ATE O	F ANA	ALYSIS			
e of Issue: sní:	sue: 05/04/2001 IT ENVIRONMENTAL (AUST) P/L	ITAL (AU:	ST) P/L								C :	1 et
≱nt Rei	sni Reference: BORAL WINGHAM	¥										
								SAMPLE ID	SAMPLE IDENTIFICATION	NO		
		Laboratory I.D.	ory I.D.	27	28	29	30	31	32	35		
		Date Sampled	mpled	20/02/2001	20/02/2001	20/02/2001	20/02/2001	20/02/2001	20/02/2001	20/02/2001		i
				97	5	V8	V09	V10	о <u>с</u> з	V11		
ЦОР	ANALYSIS DESCRIPTION	UNIT	LOR									
UN UN	Moisture Content (dried @ 103'C) TOTAL PETROLEUM HYDROCARBONS	%	0.1	5.8	0.7	0.0	0.8	15.2	16.5	3.3		
SS-	C6 - C9 Fraction	mg/kg	2	\$	\$	8	8	8	\$	\$		
500	C10 - C14 Fraction	mg/kg	50	<50	367	<50	125	~ 50	<50	1420		
-SS-	C15 - C28 Fraction	mg/kg	100	490	4660	714	7080	<100	<100	10.4g/kg		
SS-	C29 - C36 Fraction	mg/kg	100	758	5680	981	9390	120	<100	10.1g/kg		
U) Uj	BTEX				5							
SS-	Benzene	mg/kg	0.2		I		I		1			
SS-	Toluene	mg/kg	0.2	1	1			1	1			
00 00	Chlorobenzene	mg/kg	0.2	ļ	ļ	1	1		•	1		
5 S S	Ethylbenzene	mg/kg	0.2	•	1	4	I	1	1	1		
F-SS	meta- & para-Xylene	mg/kg	0.2		1	!	1	1		•		
-SS	ortho-Xylene	mg/kg	0.2	1	1		١		1	1		
SS-5(VOLATILE TPH/BTEX COMPOUND SURRDGATES	OGATES			_							
					2	2	50	10	50	R1		

Australian Laboratory Services Pty Ltd (ABN 84 009 936 029)

of 3

.

82 83 84 82 88

80 80 80

81 82 77

85 82 81

8888

81 85 81

86 80 80 80 80

% % %

4-Bromofluorobenzene

1.2-Dichloroethane-D4

Toluene-D8

)S-SS)S-SS)S-SS

ALS Environmental

ES27573 0				g	JALITY	CONT	ROL R	QUALITY CONTROL REPORT	Y
05/04/2001 IT ENVIRONMENTAL (AUST) P/L BORAL WINGHAM	ENTAL (AU HAM	ST) P/L							(ALS)
							SAMPLE ID	SAMPLE IDENTIFICATION	
	Laboratory I.D.	ory I.D.	100	101	102	103	104		
	Date Sampled	paldme	20/02/2001	22/02/2001	22/02/2001	22/02/2001	22/02/2001		
	1 International Provide Provid	-	METHOD	NTPHT2522	NTPHT2522	NTPHT2522	NTPHT2522		
ANAL I DID DEOURIF I IUN		L L L L	BLANK	SUS % REL	DUS % REC	MO % REC	MISU % REC	CONVER	
							CHECKS AND SPIKES	SPIRES	
Moisture Content (dried @ 103'C) TOTAL PETROLEUM HYDROCARBONS	%	0.1	1	1	I		1		
	mg/kg	2	8	98.0%	94.0%	102%	101%		
C10 - C14 Fraction	mg/kg	20	<50	107%	61.0%	109%	110%		
C15 - C28 Fraction	mg/kg	100	<100	103%	93.0%	%0.66	104%		
C29 - C36 Fraction	mg/kg	100	<100	103%	93.0%	I	ł		
	mg/kg	0.2	<0.2	%0.66	101%	95.0%	102%		
	mg/kg	0.2	<0.2	92.0%	94.0%	91.0%	102%		2*
Chlorobenzene	mg/kg	0.2	<0.2	93.0%	104%	105%	108%		
	mg/kg	0.2	<0.2	93.0%	%0.06	I	1		
meta- & para-Xylene	mg/kg	0.2	<0.2	92.0%	89.0%	I	1		
	mg/kg	0.2	<0.2	91.0%	92.0%	1			
VOLATILE TPH/BTEX COMPOUND SURROGATES	REDGATES					٢			
1.2-Dichloroethane-D4	%	-	110	112	88	102	108		
	%		107	103	85	100	86		
4-Bromoflitorohenzene	%	-	104	06	8	100	100		

ALS Environmental

Australian Laboratory Services Pty Ltd (ABN 84 009 936 029)

Page 3 of 3

ORGANICS QUALITY CONTROL REPORT

BATCH NO: ES27573

DATE BATCH RECEIVED: 22/2/01

CLIENT : IT Environmental

DATE BATCH COMPLETED: 05/04/01

Method	Test	Matrix	Method	Reference	QC Lot	Date	Date
Code					Number	Samples	Samples
Code			Extraction	Analysis		Extracted	Analysed
EP-071	TPH-Volatile	Soil	USEPA 5030 A	USEPA 8260A	NVOCS2522	26/02/01	27/02/01
	-Semivolatile	Soil	Tumbler	USEPA 8015A	NTPHT2522	26/02/01	27/02/01
EP-080	BTEX	Soil	USEPA 5030 A	USEPA 8260A	NVOCS2522	26/02/01	27/01/01

Where applicable, internal standards are added to sample extracts prior to instrumental analysis. Absolute peak areas and retention times fall within the criteria specified in the individual methods.

BATCH QUALITY CONTROL - CONTROL SPIKE/DUPLICATE

ALS EP-071 : Total Petroleum Hydrocarbons by Fractions

MATRIX : Soil

NVOCS2522 Vol QC Lot : Semivol QC Lot NTPHT2522

	ватсн	Blank	Spike		Spike F	Results		Cor	ntrol Lir	nits
COMPOUND	ADJ.	Conc.	Conc.	SCS	DCS	Av.	RPD	Reco	overy	R P,D
	(MDL)			Conc.	Conc.	Rec.		9	6	
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%	%	Low	High	%
C6-C9	2.0	<lor< td=""><td>20</td><td>19.5</td><td>18.8</td><td>96</td><td>4</td><td>90</td><td>108</td><td>20</td></lor<>	20	19.5	18.8	96	4	90	108	20
C10-C14	25	<lor< td=""><td>200</td><td>214</td><td>194</td><td>102</td><td>10</td><td>74</td><td>121</td><td>20</td></lor<>	200	214	194	102	10	74	121	20
C15-C28	50	<lor< td=""><td>200</td><td>206</td><td>186</td><td>98</td><td>10</td><td>68</td><td>129</td><td>20</td></lor<>	200	206	186	98	10	68	129	20
C29-C36	50	<lor< td=""><td>200</td><td>206</td><td>186</td><td>98</td><td>10</td><td>69</td><td>125</td><td>20</td></lor<>	200	206	186	98	10	69	125	20

COMMENTS:

1) The control limits are based on ALS laboratory statistical data (Method QWI-ORG/07).

2) * : Recovery or RPD falls outside the recommended control limit.

3) MDL = Method Detection Limit

4) LOR = Level Of Reporting

BATCH QUALITY CONTROL -- DUPLICATE

ALS EP-071 : Total Petroleum Hydrocarbons by Fractions

SEMIVOLATILES QC LOT NO.: VOLATILES QC LOT No.: NTPHT2522 NVOCS2522 ANALYST: A.ROSSI MATRIX : Soil

	QC DUP	LICATE RESUL	.TS
COMPOUND	ES26913	ES26913	RPD
	6	6DUP	
	mg/kg	mg/kg	%
C 6-C 9	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
C10-C14	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
C15-C28	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
C29-C36	<i_or< td=""><td><lor< td=""><td>-</td></lor<></td></i_or<>	<lor< td=""><td>-</td></lor<>	-

BATCH QUALITY CONTROL -- DUPLICATE

ALS EP-071 : Total Petroleum Hydrocarbons by Fractions

SEMIVOLATILES QC LOT NO.: VOLATILES QC LOT No.:

NTPHT2522 NVOCS2522 ANALYST: A.ROSSI MATRIX : Soil

	QC DUP	LICATE RESU	LTS
COMPOUND	ES26913	ES26913	RPD
	9	9DUP	
	mg/kg	mg/kg	%
C 6-C 9	<lor< td=""><td><lor< td=""><td>-</td></lor<></td></lor<>	<lor< td=""><td>-</td></lor<>	-
C10-C14	<lor< td=""><td><lor< td=""><td>-</td></lor<></td></lor<>	<lor< td=""><td>-</td></lor<>	-
C15-C28	<lor< td=""><td><lor< td=""><td>6 **</td></lor<></td></lor<>	<lor< td=""><td>6 **</td></lor<>	6 **
C29-C36	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	

BATCH QUALITY CONTROL - MATRIX SPIKE/DUPLICATE

ALS EP-071 : Total Petroleum Hydrocarbons by Fractions

Vol QC Lot :	NVOCS2522	SPIKED SAMPLE : MATRIX :	
Semivol QC Lot :	NTPHT2522	WATNA.	001

	Sample	Spike		Spike Re	sults		Control
COMPOUND	Results	Level	MS	MSD	Av.	RPD	Limits
			Conc	Conc	Rec.		
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	RPD
C6-C9	<lor< td=""><td>10</td><td>10.2</td><td>10.1</td><td>102</td><td>1</td><td>20</td></lor<>	10	10.2	10.1	102	1	20
C10-C14	<lor< td=""><td>426</td><td>464</td><td>468</td><td>109</td><td>1</td><td>20</td></lor<>	426	464	468	109	1	20
C15-C28	<lor< td=""><td>1576</td><td>1568</td><td>1640</td><td>102</td><td>4</td><td>20</td></lor<>	1576	1568	1640	102	4	20
C29-C36	<lor< td=""><td>N/A</td><td></td><td></td><td></td><td></td><td></td></lor<>	N/A					

COMMENTS :

1) LOR: level of reporting

2) The control limits are based on ALS laboratory statistical data. (Method QWI-ORG/06)

3) * : Recovery or RPD falls outside of the recommended control limits.

BATCH QUALITY CONTROL + CONTROL SPIKE/DUPLICATE

ALS EP-080 : BTEX ANALYSIS

NVOCS2522 QC Lot No. :

MATRIX : Soil

	DATON	Blank	Spike		Spike F	Results		Cor	ntrol Lir	nits
COMPOUND	BATCH ADJ.	Conc.	Conc.	SCS	DCS	Av.	RPD	Reco	overy	RPD
COMPOUND	(MDL)			Conc.	Conc.	Rec.		9	6	
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%	%	Low	High	%
	0.1	<lor< td=""><td>1.0</td><td>0.99</td><td>1.01</td><td>100</td><td>3</td><td>83</td><td>115</td><td>20</td></lor<>	1.0	0.99	1.01	100	3	83	115	20
Benzene	0.1	<lor< td=""><td>1.0</td><td>0.92</td><td>0.94</td><td>93</td><td>2</td><td>85</td><td>113</td><td>20</td></lor<>	1.0	0.92	0.94	93	2	85	113	20
Toluene		<lor< td=""><td>1.0</td><td>0.93</td><td>1.04</td><td>98</td><td>11</td><td>89</td><td>112</td><td>20</td></lor<>	1.0	0.93	1.04	98	11	89	112	20
Chlorobenzene	0.1		1.0	0.93	0.90	92	4	86	114	20
Ethylbenzene	0.1	<lor< td=""><td>1.0</td><td>0.92</td><td>0.89</td><td>91</td><td>4</td><td>80</td><td>116</td><td>20</td></lor<>	1.0	0.92	0.89	91	4	80	116	20
m- & p-Xylene	0.1	<lor< td=""><td></td><td>0.91</td><td>0.92</td><td>91</td><td>1</td><td>85</td><td>115</td><td>20</td></lor<>		0.91	0.92	91	1	85	115	20
o-Xylene	0.1	<lor< td=""><td>1.0</td><td>0.91</td><td>0.02</td><td>J</td><td></td><td></td><td></td><td>ne</td></lor<>	1.0	0.91	0.02	J				ne

The control limits are based on ALS laboratory statistical data (Method QWI-ORG/07).
 * : Recovery or RPD falls outside the recommended control limit.
 MDL = Method Detection Limit

4) LOR = Level Of Reporting

BATCH QUALITY CONTROL --- DUPLICATE

ALS EP-080 : BTEX ANALYSIS

Analyst : S.Green

QC Lot No. : MATRIX : NVOCS2522 Soil

	QC D	JPLICATE RESU	LTS
COMPOUND	ES26913 6	ES26913 6DUP	RPD
	mg/kg	mg/kg	%
Benzene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
Toluene	<lor< td=""><td><lor< td=""><td>•</td></lor<></td></lor<>	<lor< td=""><td>•</td></lor<>	•
Chlorobenzene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
Ethylbenzene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
m- & p-Xylene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
o-Xylene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	

EATCH QUALITY CONTROL --- DUPLICATE

ALS EP-080 : BTEX ANALYSIS

Analyst : S.Green

QC Lot No. : MATRIX : NVOCS2522 Soil

	QC DU	JPLICATE RES	JLTS
COMPOUND	ES26913	ES26913	RPD
	9	9DUP	
	mg/kg	mg/kg	%
Benzene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
Toluene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
Chlorobenzene	<lor< td=""><td><lor< td=""><td>-</td></lor<></td></lor<>	<lor< td=""><td>-</td></lor<>	-
Ethylbenzene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
m- & p-Xylene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
o-Xylene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	

BATCH QUALITY CONTROL - MATRIX SPIKE/DUPLICATE

ALS EP-080 : BTEX ANALYSIS

QC Lot No. : NVOCS2522

SPIKED SAMPLE : ES26913-9 MATRIX : Soil

	Sample	Spike		Spike Res	sults		Control
COMPOUND	Results	Level	MS	MSD	Av.	RPD	Limits
			Conc	Conc	Rec.		
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	RPD
Benzene	<lor< td=""><td>2.5</td><td>2.4</td><td>2.6</td><td>99</td><td>8</td><td>20</td></lor<>	2.5	2.4	2.6	99	8	20
Toluene	<lor< td=""><td>2.5</td><td>2.3</td><td>2.5</td><td>96</td><td>11</td><td>20</td></lor<>	2.5	2.3	2.5	96	11	20
Chlorobenzene	<lor< td=""><td>2.5</td><td>2.6</td><td>2.7</td><td>107</td><td>3</td><td>20</td></lor<>	2.5	2.6	2.7	107	3	20

COMMENTS :

1) LOR: level of reporting

2) The control limits are based on ALS laboratory statistical data. (Method QWI-ORG/06)

3) * : Recovery or RPD falls outside of the recommended control limits.

SRAES27394

SAMPLE RECEIPT ADVICE

COMPANY:	IT ENVIRONMENTAL (AUST) P/L
ATTENTION:	M BENNETT
DATE ;	Mar. 28, 2001
FROM:	Karin Laanemaa, ENV SYDNEY

ALS has received samples pertaining to your reference: J109264B

For future reference the batch number on this order is: ES27394

All samples and paper work were received in good order. Samples have been received within recommended holding times. Samples chilled when received. Samples received in appropriately pretreated and preserved containers. Please direct any turnaround/technical queries to Michael Heery. Any queries relating to sample condition/numbering/breakages should be directed to Leigh Wills. ANALYTICAL WORK FOR THIS BATCH WILL BE CONDUCTED AT ALS SYDNEY All aqueous samples are stored for two weeks and solid samples for three months from the date of completion of the batch, unless specific arrangements are made otherwise.

Purchase Order Number: J109264B Chain of Custody Reference Number: 22141 Project Name: BORAL WINGHAM

You can expect results to be reported as detailed below:

All Environmental Results

Mar. 29, 2001

A L S - SERVICING YOUR NEEDS BETTER

AUSTRALIAN LABORATORY SERVICES P/L

RISBANE Tel: 61-7-3243 7222 ™ax: 61-7-3243 7218	SYDNEY Tel: 61-2-8784 8555 Fax: 61-2-8784 8500	NEWCASTLE Tel: 61-2-4968 9433 Fax: 61-2-4968 0349	
dr. 01-1-32-45 7210	TOUL OF BOUCH SEL		NAME OF TAXABLE PARTY OF TAXABLE PARTY.

	27. MAR. 2001 - 10	9:03	}	IL ENAJKO	NMENT	AL.					APPING	ر المراكبينان	- de allier y	undstatut ww	Symbolization of the	 NO.	387	deresson	Р. 	2/2			-
22141	- Pertha Tel (18); 9481 4333 Faz (08) 9481 4122 Lexel7, 220 George's Terrzoe. Ferth WA 6000 Sydrey: Tel: (102) 9502 4344 Faz (102) 95102 2105 17 Forester Street, Kingrgurve NSW 2209 17 Forester Street, Kingrgurve NSW 2209 Other:	Analysis Request Section	11111111111		2 2 2 6 1 1 NOTES		1 100 D 100					Tabité Return	The second se	14x305x19			Sample Receipt Advice: (Lab Use Only)	All Samples Received in Good Condition	All Documentation is in Proper Order	The second		Lat. ReifBatch No. ES27394	
4					1 R 1 8 2 2	1		2		7	2	2	×					1-3-01	Time: IOA~ .				The second secon
IS REQU	((08) 9442 6499 31 (07) 25-2 5712 (07) 25-2 5712 (07) 25-2 5712 (07) 16-405 201 6221 16-40 200 200 201 25:20 25:9 407 20122		Ż	ear-	T-A-T (Specify)	2.50	2							 		 		Date: J			Turre:	peved	
OF-CUSTODY AND ANALYSIS REQUE	Adeiade: Tel ((66) 8443 5500 Fax (09) 9443 6499 27 Queen Street, Thebarton SA 5231 Erisbarte: Bi (07) 3252 5711 Fax (07) 2252 5712 Level 2, 33 Longland Street, Nawelaac QLD 4005 Hobart: Tel (00) 5231 1620 Fax (07) 6221 1640 127 Behourne: Tel (00) 5231 1620 Fax (03) 529 1640 127 Behourne: Tel (00) 9619 0784 Fax (03) 5819 4079 169 Burneci Road, Hawihten VS 3122	1.00	W. ALS.		Contatrer Type & Preservative	7~1							····				RECEIVED BY:	Cerry Gelonovic	and lab Eercico	2		Bottle, V - Viai, N - Nitric Acid Preserved	
OF-CUS		Task No:	Laboratory: A	•	Matrix (Soil etc)	1105					-							Signature: ICen	Company:	Signature:	Company:	Rinser Glass	
CH)	a) Pty L	30			aline												-	1				stuad Acid 1	
	Australi				Sample Date	27.606				-	-		*					1				Solvent Wa	
	taentai (Aam		Sample Depth												BY:	1 ,	1. I Time:	Date:	Tame:	Plasfic, G - Acid Prese	
*	IT Environmenial (Anstralia) Pty Lid 45 Alean of The II Gaup Allean of The II Gaup and therempore an	J109264B	BORIL Ningham		Sample Location	•	(?) ()	Le la	6	() ()		1					RELINQUISHED BY:	· 112.			99) 199	* Contafter Type & Preservation Codes: P - Plastic, G - Solvent Wasted Acid Rinsed Glass C - Hydrochioric Acid Preserved, S - Suppuric Acid Preserved, 1 - ka	
mara an	igroup.	i		Special Instructions:	Sample ID	V12 (VIS (シシシシシシシシシシシシシシシシシシシシシシシシシシシシシシシシシシシシシシシ		計をす	NO		200					LIIS B	·	e.	ъ.	er Type & Prese chioric Acid Pres	
	the	Project No:	Project Name: Samplers Name:	Special I	Lab. Ho.													Signature	Company	Signature	Company.	- Contain C - Hydra	

.

FROM: ALDVIEY

NO.387 P.2/2

ALS Environmental

CERTIFICATE OF ANALYSIS

Batch:

ES27394

Sub Batch:

0

CONTACT: M BENNETT CLIENT: IT ENVIRONMENTAL (AUST) P/L ADDRESS: 17 FORRESTER STREET KINGSGROVE NSW 2208 LABORATORY:SYDNEYDATE RECEIVED:27/03/2001DATE COMPLETED:30/03/2001SAMPLE TYPE:SOILNo. of SAMPLES:9

ORDER No.: J109264B PROJECT: BORAL WINGHAM

COMMENTS

Samples analysed on an as received basis. Results reported on a dry

weight basis.

NOTES

This is the Final Report and supersedes any preliminary reports with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: SYDNEY

Address 277-289 Woodpark Road SMITHFIELD NSW 2164
 Phone:
 61-2-8784 8555

 Fax:
 61-2-8784 8500

 Email:
 brianw@als.com.au

Signatory

22

LABORATORIES

AUSTRALASIA

Brisbane Melbourne Sydney Newcastle Hong Kong Singapore Kuala Lumpur Auckland AMERICAS

Vancouver Santiago Lima This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full.

4	E S	A B	ALS)
			Ú

CERTIFICATE OF ANALYSIS

ES27394 0

.4.

30/03/2001

Batch: ∍ of Issue:

กณ์:

IT ENVIRONMENTAL (AUST) P/L

BORAL WINGHAM

nt Reference:

								SAMPLE IDENTIFICATION	CNTIFICATI	NO			
					1			OAINIT LL 15			1	c	
		I shorston I D	UI NC	-	2	3	4	5 2	9		20	»	
		Lauria			10000000	2000/00/00	1000120100	22/03/2001	22/03/2001	22/03/2001	22/03/2001	22/03/2001	
		Date Sampled	mpled	22/03/2001	1002/20/22	1002/20/22	100210072					~~~~	
				V12	V13	V14	V15	V16	V17	V18	14S	Ś	
	ANALYSIS DESCRIPTION	UNIT	LOR									46.0 .	
non	VIAT LOIG OF COM LIGH						00	13.4	2.7	6.7	0.11	0.01	
	Moisture Content (dried @ 103'C)	%	0.1	13.8	10.01	0.0	2		34				
U, U	TOTAL PETROLEUM HYDROCARBONS						9	٢	0	Ŷ	\$	2	
}		na/kn	~	0	\$	8	27	7	2	, (2	~ SD	
လို	C6 - C9 Fraction	64,611		Ċ.	NED V	<50	<50	<50	<20	<50	10	22	
い. い	C10 - C14 Fraction	mg/kg	20	nc>	7		100	<100	<100	<100	1130	<100	
(). (). ().	C15 - C28 Fraction	mg/kg	100	<100	<100				<100	<100	1420	<100	
	C29 - C36 Fraction	mg/kg	100	<100	<100	001>							
U U U	VOLATILE TPH/BTEX COMPOUND SURRDGATES	RDGATES						G	G	86	80	88	
	1 2-Dichloroethane-D4	%	-	85	83	92	22	8		68	87	86	
		%	-	82	87	68	\$	0	8		76	67	
JS-22	1 oluene-US	2		10	70	81	76	74	80	14	2		
33-88	4-Bromofluorobenzene	%	-	0	2								

ALS Environmental

4								SAMPLE IDENTIFICATION	104	01 27/03/2001	63 NTPHT2563	MS % REC MSD % REC	CHECKS AND SPIKES					% 111%	-					_	835
	CON								103	27/03/2001	NTPHT2563 NTPHT2563					0101		107%	104%			2	5	16	86
									102	27/03/2001	NTPHT2563	DCS % REC	2			,00 00	%0'AA	%0.79	81.0%	00 00	00.0.20		94	94	10
) グ							101	27/03/2001	NTPHT2563	SCS % RFC	2000		ł		95.0%	98.0%	89.0%	20.00	98.0%		92	91	2
									100	27/03/2001	METHOD	DI ANK	DLANN				8	<50	/100	2017	<100		95	92	
				Ĩ	T) P/L				N.I.D.	noled			LON L	2002	0.1		7	50	100	001	100			-	
				0	TAL (AUS		Σ		Laboratory I.D.	Date Samuled		TIMIT			%		mg/kg	ma/kn	2	mg/kg	mg/kg	OGATES	%	%	2
	ES27394	0	30/03/2001		IT ENVIRONMENTAL (AUST) P/L		rence: BORAL WINGHAM		1	_1			ANALYSIS DESCRIPTION		Moisture Content (dried @ 103'C)	TOTAL PETROLEUM HYDROCARBONS	C6 - C0 Eraction		C10 - C14 Fraction	C15 - C28 Fraction	C29 - C36 Fraction	VOLATILE TPH/BTEX COMPOUND SURRDGATES	1 2-Dichloroethane-D4		Toluene-U8
	ch:	Batch:	100 90 0	e of Issue:	, n fi l	5 k 6 .	ani Reference:						DOH			U, U,		りのこ	SS-1	1-SS		00-00		00-00	02-20

ł

ALS Environmental

Australian Laboratory Services Pty Ltd (ABN 84 009 936 029)

Page 3 of 3

ORGANICS QUALITY CONTROL REPORT

BATCH NO: ES27394

DATE BATCH RECEIVED: 27/03/01

CLIENT: IT Environmental, Sydney

DATE BATCH COMPLETED: 29/03/01

PROJECT: J109264B_Boral Wingham

...

Method	Test	Matrix	Method I	Reference	QC Lot Number	Date Samples	Date Samples
Code			Extraction	Analysis		Extracted	
EP-071 EP-071/80	TPH(SV) TPH(V)/BTEX	Soil Soil	Tumbler USEPA 5030A	USEPA 8015A USEPA 8260A	NTPHT2563 NVOCS2563	28/03/01 26/03/01	28/03/01)28/03/01

Where applicable, internal standards are added to sample extracts prior to instrumental analysis. Absolute peak areas and retention times fall within the criteria specified in the individual methods.

Abbreviations: SV = semivolatile, V = volatile

*: In-house methods

BATCH QUALITY CONTROL - CONTROL SPIKE/DUPLICATE

ALS EP-071 : Total Petroleum Hydrocarbons by Fractions

MATRIX : SOIL

NVOCS2563 Vol QC Lot : Semivol QC Lot : NTPHT2563

	БАТСН	Blank	Spike		Spike R	esults		Con	trol Lir	
COMPOUND	ADJ.	Conc.	Conc.	SCS	DCS	Av.	RPD	Reco	very	RPD
COMINI	(MDL)			conc.	conc.	Rec.		9	6	
		mg/kg	mg/kg	mg/kg	mg/kg	%	%	Low	High	%
	mg/kg	mg/kg	mg/ng		40.0	97	5	90	108	20
C6-C9	2.0	<lor< td=""><td>20</td><td>18.9</td><td>19.8</td><td>97</td><td></td><td></td><td>-100</td><td></td></lor<>	20	18.9	19.8	97			-100	
C10-C14	25	< LOR	200	196	194	98	1	74	121	20
010-014				178	162	85	9	68	129	20
C15-C28	50	< LOR	200	1/0	102				105	00
C29-C36	50	< LOR	200	196	172	92	13	69	125	_20

COMMENTS:

1) The control limits are based on ALS laboratory statistical data (Method QWI-ORC/07).

2) * : Recovery or RPD falls outside the recommended control limit.

3) MDL = Method Detection Limit

4) LOR = Level Of Reporting

BATCH QUALITY CONTROL -- DUPLICATE

ALS EP-071 : Total Petroleum Hydrocarbons by Fractions

SEMIVOLATILES QC LOT NO.: VOLATILES QC LOT NO.: NTPHT2563 NVOCS2563 ANALYST: A.ROSSI MATRIX : Soil

	OC DUP	LICATE RESUL	TS
COMPOUND	NE2925	NE2925	RPD
	25	25DUP	
	mg/kg	mg/kg	%
C 6-C 9	209	217	4
C10-C14	1318	1288	2
C15-C28	1380	1360	1
C29-C36	< LOR	< LOR	

BATCH QUALITY CONTROL -- DUPLICATE

ALS EP-071 : Total Petroleum Hydrocarbons by Fractions

SEMIVOLATILES QC LOT NO.: VOLATILES QC LOT NO.: NTPHT2563 NVOCS2563 ANALYST: A.ROSSI MATRIX : SOII

	QC DUP	LICATE RESUL	
COMPOUND	NE2925	NE2925	RPD
	27	27DUP	
	mg/kg	mg/kg	%
C 6-C 9	35	42	18
C10-C14	54	62	14
C15-C28	110	120	9
C29-C36	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	

BATCH QUALITY CONTROL - MATRIX SPIKE/DUPLICATE

ALS EP-071 : Total Petroleum Hydrocarbons by Fractions

Val octot	NVOCS2563	SPIKED SAMPLE :
VOI GO LOU.		MATRIX :
Semivol QC Lot :	MIPHI2505	

NE2925-27

Soll

	Sample	Spike		Spike Res	sults		Control
COMPOUND	Results	Level	MS	MSD	AV.	RPD	Limits
			Conc	conc	Rec.		
	mg/kg	mg/kg	mg/kg	nng/kg	%	%	RPD
C6-C9	351	10	10.4	9.9	102	5	20
C10-C14	54	430	458	478	109	4	20
C15-C28	110	1570	1630	1712	106	5	20
C29-C36	< LOR	N/A		-			

COMMENTS :

1) LOR: level of reporting

2) The control limits are based on ALS laboratory statistical data. (Method QWI-ORC/06)

3) * : Recovery or RPD falls outside of the recommended control limits.

BATCH QUALITY CONTROL - CONTROL SPIKE/DUPLICATE

ALS EP-080 : BTEX ANALYSIS

MATRIX : SOIL

QC LOT NO. :

NVOCS2563

		Distrik	Spike		Spike R	esults		Con	trol Lir	nits
COMPOUND		Conc.	Conc.	scs	DCS	Av.	RPD	Reco	very	RPD
COMPOSITE	ADJ. Conc. C (MDL) mg/kg mg/kg m 0.1 <lor 0.1 <lor ne 0.1 <lor e 0.1 <lor< td=""><td></td><td>Conc.</td><td>conc.</td><td>Rec.</td><td></td><td>9</td><td>6</td><td></td></lor<></lor </lor </lor 		Conc.	conc.	Rec.		9	6		
	(MDL) (MDL) mg/kg mg/kg 0.1 <lor 0.1 <lor enzene 0.1 <lor nzene 0.1 <lor< td=""><td>ma/ka</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td>%</td><td>%</td><td>LOW</td><td>High</td><td>%</td></lor<></lor </lor </lor 	ma/ka	mg/kg	mg/kg	mg/kg	%	%	LOW	High	%
	DUND ADJ. Conc. Conc. (MDL) mg/kg mg/kg mg/kg mg/kg 0.1 <lor< td=""> 1.0 e 0.1 <lor< td=""> 1.0 penzene 0.1 <lor< td=""> 1.0 mzenee 0.1 <lor< td=""> 1.0</lor<></lor<></lor<></lor<>		0.97	1.08	102	11	83	115	20	
Benzene	(MDL) mg/kg mg/kg 0.1 <lor< td=""> 0.1 <lor< td=""> nzene 0.1 <lor< td=""> zene 0.1 <lor< td=""></lor<></lor<></lor<></lor<>		1.01	1.11	106	9	85	113	20	
Toluene	UND ADJ. Conc. (MDL) mg/kg mg/kg 0.1 <lor 0.1 <lor nzene 0.1 <lor zene 0.1 <lor< td=""><td>1</td><td></td><td>1.00</td><td>1.10</td><td>105</td><td>10</td><td>89</td><td>112</td><td>20</td></lor<></lor </lor </lor 	1		1.00	1.10	105	10	89	112	20
Chlorobenzene	(MDL) mg/kg mg/kg e 0.1 <lor< td=""> enzene 0.1 <lor< td=""> nzene 0.1 <lor< td=""></lor<></lor<></lor<>	< LOR			1.09	103	13	86	114	20
Ethylbenzene		< LOR	1.0	0.96			10	80	116	20
m- & p-Xylene	0.1	< LOR	1.0	0.99	1.10	104				20
o-Xylene	0.1	<lor< td=""><td>1.0</td><td>0.97</td><td>1.09</td><td>103</td><td>11</td><td>85</td><td>115</td><td>20</td></lor<>	1.0	0.97	1.09	103	11	85	115	20

1) The control limits are based on ALS laboratory statistical data (Method QWI-ORG/07). 2) * : Recovery or RPD falls outside the recommended control limit.

3) MDL = Method Detection Limit

4) LOR = Level Of Reporting

BATCH QUALITY CONTROL -- DUPLICATE

ALS EP-080 : BTEX ANALYSIS

YEK HUN Analyst :

QC LOT NO. : MATRIX :

	QC I	DUPLICATE RESUL	TS
COMPOUND	NE2925 25	NE2925 25DUP	RPD
	mg/kg	mg/kg	%
Benzene	0.8	0.8	0
Toluene	1.1	1.1	0
Chlorobenzene	<lor< td=""><td><1.0R</td><td></td></lor<>	<1.0R	
Ethylbenzene	3.4	3.6	6
m- & p-Xylene	7.3	7.6	4
o-Xylene	2	2.1	5

NVOCS2563 Soil

BATCH QUALITY CONTROL -- DUPLICATE

ALS EP-080 : BTEX ANALYSIS

Analyst : YEK HUN

QC LOT NO.: NVOC52563 MATRIX : Soil

	QC D	UPLICATE RESUL	TS
COMPOUND	NE2925 27	NE2925 27DUP	RPD
	mg/kg	mg/kg	%
Benzene	1.1	1.1	0
Toluene	1.9	2.2	15
Chlorobenzene	<lor< td=""><td><lor< td=""><td>•</td></lor<></td></lor<>	<lor< td=""><td>•</td></lor<>	•
Ethylbenzene	1.2	1.2	0
m- & p-Xylene	2.3	2.5	8
o-Xylene	0.7	0.8	13

BATCH QUALITY CONTROL - MATRIX SPIKE/DUPLICATE

ALS EP-080 : BTEX ANALYSIS

QC Lot No. : NVOCS2563

SPIKED SAMPLE : NE2925-27 MATRIX : Soil

	Sample	Spike		Spike Res	ults		Control
COMPOUND	Results	Level	MS	MSD	Av.	RPD	Limits
			Conc	conc	Rec.		
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	RPD
Dein70120	1	2.5	2.3	2.4	93	3	20
Benzene	2	2.5	2.2	2.6	97	18	20
Toluene Chlorobenzene	<1.0R	2.5	2.5	2.6	102	2	20

COMMENTS :

1) LOR: level of reporting

2) The control limits are based on ALS laboratory statistical data. (Method QWI-ORG/06)

3) * : Recovery or RPD falls outside of the recommended control limits.

ALS Environmental

CERTIFICATE OF ANALYSIS

Batch: Sub Batch: ES27394

0

CONTACT: M BENNETT CLIENT: IT ENVIRONMENTAL (AUST) P/L ADDRESS: 17 FORRESTER STREET

KINGSGROVE NSW 2208

ORDER No.: J109264B PROJECT: BORAL WINGHAM

COMMENTS

Samples analysed on an as received basis. Results reported on a dry

weight basis.

1

NOTES

This is the Final Report and supersedes any preliminary reports with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: SYDNEY

Address 277-289 Woodpark Road SMITHFIELD NSW 2164 Phone: 61-2-8784 8555

Fax: 61-2-8784 8500 Email: brianw@als.com.au

7 1 Signatory

LABORATORIES

AUSTRALASIA

Brisbane Melbourne Sydney Newcastle Hong Kong Singapore Kuala Lumpur Auckland AWERICAS Vancouver Santiago

Lima

This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full.

Australian Laboratory Services Pty Ltd (ABN 84 009 936 029)

Page 1 of 3

LABORATORY: DATE RECEIVED: DATE COMPLETED: SAMPLE TYPE: No. of SAMPLES: SYDNEY 27/03/2001 30/03/2001 SOIL 9

	 đ	3
-	ų	1
the second	A	٩
	4	C

CERTIFICATE OF ANALYSIS

30/03/2001 IT ENVIRONMENTAL (AUST) P/L

II ENVIRUNMENTAL (AUS BORAL WINGHAM

ient Reference:

ib Batch: ite of Issue:

10173F

ient:

Laboratory I.D. 1 2 3 4 5 Date Sampled 22/03/2001 22/03/201 22/03/201 22/03/201 22/03/201 22/03/201 2/0									SAMPLE IDENTIFICATION	ENTIFICATI	NO			
Date Sampled Z/03/2001 Z/03/201			Laborat	ory I.D.		2	3	4	S	9	7	60	6	
D ANALYSIS DESCRIPTION UNIT LOR V13 V14 V15 V Moisture Content (dried @ 103°C) WIT LOR 0.1 13.8 16.6 3.9 0.9 Moisture Content (dried @ 103°C) % 0.1 13.8 16.6 3.9 0.9 TOTAL PETROLEUM HYDROCARBONS mg/kg 2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 2			Date Sa	Impled	22/03/2001	22/03/2001	22/03/2001	22/03/2001	22/03/2001	22/03/2001	22/03/2001	22/03/2001	22/03/2001	
O ANALYSIS DESCRIPTION UNIT LOR N I Moisture Content (dried @ 103°C) % 0.1 13.8 16.6 3.9 0.9 Moisture Content (dried @ 103°C) % 0.1 13.8 16.6 3.9 0.9 TOTAL PETROLEUM HYDROCARBONS mg/kg 2 ~2 ~2 ~2 ~2 C6 - C9 Fraction mg/kg 50 ~50 ~50 ~50 ~50 ~50 C10 - C14 Fraction mg/kg 100 ~100 ~100 ~100 ~100 ~100 ~100 C29 - C36 Fraction mg/kg 100 ~10					V12	V13	V14	V15	V16	V17	V18	SP1	QCX	
Moisture Content (dried @ 103°C) % 0.1 13.8 16.6 3.9 0.9 TOTAL PETROLEUM HYDROCARBONS mg/kg 2 <2	THOD	ANALYSIS DESCRIPTION	UNIT	LOR										
TOTAL PETROLEUM HYDROCARBONS mg/kg 2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	υ	Moisture Content (dried @ 103'C)	%	0.1	13.8	16.6	3.9	0.9	13.4	2.7	7.9	11.0	16.0	
C6 - C9 Fraction mg/kg 2 <2	1-55	TOTAL PETROLEUM HYDROCARBONS												
C10 - C14 Fraction mg/kg 50 <50	SS-1-	C6 - C9 Fraction	mg/kg	2	\$	\$	8	\$	Ŷ	\$	22	8	₽	
C15 - C28 Fraction mg/kg 100 <100	SS-1	C10 - C14 Fraction	mg/kg	50	<50	<50	<50	<50	<50	<50	<50	67	<50	
C29 - C36 Fraction mg/kg 100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <td>.1-SS</td> <td>C15 - C28 Fraction</td> <td>mg/kg</td> <td>100</td> <td><100</td> <td><100</td> <td><100</td> <td><100</td> <td><100</td> <td><100</td> <td><100</td> <td>1130</td> <td><100</td> <td></td>	.1-SS	C15 - C28 Fraction	mg/kg	100	<100	<100	<100	<100	<100	<100	<100	1130	<100	
VOLATILE TPH/BTEX COMPOUND SURRDGATES 85 83 92 84 1.2-Dichloroeihane-D4 % 1 85 83 92 84 Tolinoo D8 % 1 87 89 84	·1-SS	C29 - C36 Fraction	mg/kg	100	<100	<100	<100	<100	<100	<100	<100	1420	<100	
1.2-Dichloroethane-D4 % 1 85 83 92 84 Tolinoo Da % 1 87 89 84	SS-SO	VOLATILE TPH/BTEX COMPOUND SURR	OGATES											
Tolinana D8 87 89 84	30S-SS	1.2-Dichloroethane-D4	%	1	85	83	92	84	80	60	86	80	88	
	30S-SS	Toluene-D8	%	F	82	87	68	84	81	88	82	87	86	
30S-SS 4-Bromofiuorobenzene % 1 78 79 81 76 74	30S-SS	4-Bromofluorobenzene	%	-	78	79	81	76	74	80	74	76	79	

ALS Environmental

Australian Laboratory Services Pty Ltd (ABN 84 009 936 029)

Page 2 of 3

tch: b Batch:	ES27394 : 0)	QU	ΙΑΙΤΥ	CONTI	QUALITY CONTROL-REPORT	EPORT	
te of Issue: lent:	ue: 30/03/2001 IT ENVIRONMENTAL (AUST) P/L	ITAL (AUS	3T) P/L							(ALS)
ient Reference:		W								8
								SAMPLE IDE	SAMPLE IDENTIFICATION	
		Laboratory I.D.	ny I.D.	100	101	102	103	104		
		Date Sampled	mpled	27/03/2001	27/03/2001	27/03/2001	27/03/2001	27/03/2001		
19				METHOD	NTPHT2563	NTPHT2563	NTPHT2563 NTPHT2563	NTPHT2563		
THOD	ANALYSIS DESCRIPTION	UNIT	LOR	BLANK	SCS % REC	DCS % REC	MS % REC MSD % REC	MSD % REC		
							0	CHECKS AND SPIKES	SPIKES	
									-	
5	Moisture Content (dried @ 103'C)	%	0.1	I	I	I	l	1		
SS-F-	TOTAL PETROLEUM HYDROCARBONS									
1-SS	C6 - C9 Fraction	mg/kg	2	8	95.0%	%0.66	104%	80.68		
-1-SS	C10 - C14 Fraction	mg/kg	50	<50	98.0%	%0.76	107%	111%		
71-SS	C15 - C28 Fraction	mg/kg	100	<100	89.0%	81.0%	104%	109%		
71-SS	C29 - C36 Fraction	mg/kg	100	<100	98.0%	86.0%	I	I		
SD-SCS	VOLATILE TPH/BTEX COMPOUND SURRDGATES	DGATES								
30S-SS	1.2-Dichloroethane-D4	%	-	35	92	94	91	101		
30S-SS	Toluene-D8	%	-	92	91	94	91	85		
80S-SS	4-Bromofluorobenzene	%	1	89	92	97	86	85		

ALS Environmental

Australian Laboratory Services Pty Ltd (ABN 84 009 936 029)

Page 3 of 3

a a

SYDNEY

08/05/2001

14/05/2001

SOIL

2

ALS Environmental <u>CERTIFICATE OF ANALYSIS</u>

Batch: Sub Batch: ES27983

LABORATORY:

SAMPLE TYPE:

No. of SAMPLES:

DATE RECEIVED:

DATE COMPLETED:

CONTACT: M BENNETT CLIENT: IT ENVIRONMENTAL (AUST) P/L ADDRESS: 17 FORRESTER STREET KINGSGROVE NSW 2208

ORDER No.: J109264B

ACCEDI.

COMMENTS

Samples as received digested by USEPA method 3051 prior to the

determination of metals. Cr6+ determined on a 1:5 soil/water extract.

Results reported on a dry weight basis.

NOTES

This is the Final Report and supersedes any preliminary reports with this batch number. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: SYDNEY

Address 277-289 Woodpark Road SMITHFIELD NSW 2164
 Phone:
 61-2-8784 8555

 Fax:
 61-2-8784 8500

 Email:
 brianw@als.com.au

breg Vogel Signatory

LABORATORIES

AUSTRALASIA

Brisbane Melbourne Sydney Newcastle Auckland Hong Kong Singapore Kuala Lumpur Bogor AMERICAS Vancouver Santiago Antofagasta Lima This Laboratory is accredited by the National Association of Testing Authorities, Australia. The testisj reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full.

	Euz, 983				
b Batch:	0)	
te of Issue:	14/05/2001				
ient:	IT ENVIRONMENTAL (AUST) P/L	JTAL (AU	ST) P/L		

ent:

CERTIFICATE OF ANALYSIS

ient Ref	ient Reference:									
							SAMPLE IDENTIFICATION	TIFICATIO	NO.	
		Laboratory I.D.	ny I.D.	-	2	1	:		0.5	
		Date Sampled	mpled	04/05/2001 SD2	04/05/2001	1			1	
THOD	ANALYSIS DESCRIPTION		LOR	20	5					
ß	Moisture Content (dried @ 103'C)	%	0.1	10.0	11.7					
15T	Arsenic - Total	mg/kg	.	ю	S	-				
151	Cadmium - Total	mg/kg	-	V	⊽					
15T	Chromium - Total	mg/kg	-	12	14					
151	Copper - Total	mg/kg		9	10					
151	Lead - Total	mg/kg	•	12	2		19-			
)5T	Zinc - Total	mg/kg	-	81	15		•			
357	Mercury - Total	mg/kg	0.1	<0.1	0.3					
20	Hexavalent Chromium	mg/kg	-	2	4					

ALS Environmental

н 19-18 но	[
ALS															
QUALITY CONTROL-REPORT	SAMPLE IDENTIFICATION	202	08/05/2001	MS % REC		CHECKS AND SPIKES	ŀ	27.0%	89.0%	88.0%	82.0%	93.0%	94.0%	80.0%	1
CONTR		201		LCS % REC N		CHI	1	85.0%	84.0%	86.0%	90.0%	85.0%	87.0%	84.0%	100%
ALITY		200		METHOD	BLANK		1	2	Ŷ	Ÿ	Ł	Ł	2	<0.1	4
QU			04/05/2001	SP2	CHK		10.0	1	ł		1				7
)		-	04/05/2001	SP2	MS % REC		1	I	I	I	I	I	١	I	102%
(T) Р/L		ny I.D.	npled		LOR		0.1	.	٠	- -	. -	,-	÷	0.1	-
ENTAL (AUS	1	Laboratory I.D.	Date Sampled	1	UNIT		%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
ES27983 0 14/05/2001 IT ENVIRONMENTAL (AUST) P/L rence:	and the second se				ANALYSIS DESCRIPTION		Moisture Content (dried @ 103'C)	Arsenic - Total	_	_	'	'		N	ţ
tch: b Batch: te of Issue: ent: ient Reference:					THOD		5	-							

ALS Environmental

SYDNEY

08/05/2001

14/05/2001

SOIL

2

ALS Environmental CERTIFICATE OF ANALYSIS

Batch: Sub Batch:

ES27983 1

LABORATORY:

SAMPLE TYPE:

No. of SAMPLES:

DATE RECEIVED:

DATE COMPLETED:

CONTACT: **M BENNETT** CLIENT: IT ENVIRONMENTAL (AUST) P/L ADDRESS: **17 FORRESTER STREET**

KINGSGROVE NSW 2208

ORDER No.: J109264B

ROJECT:

COMMENTS

Samples analysed on an as received basis. Results reported on a dry

weight basis.

NOTES

This is the Final Report and supersedes any preliminary reports with this batch number. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: SYDNEY

Address 277-289 Woodpark Road SMITHFIELD NSW 2164

Phone: 61-2-8784 8555

61-2-8784 8500 Fax:

brianw@als.com.au Email:

Signatory

LABORATORIES

AUSTRALASIA

Brisbane Melbourne Sydney Newcastle Auckland

Hong Kong Singapore Kuala Lumpur Bogor

AMERICAS Santiago

Vancouver Antofagasta Lima

	AL
	SIS
	ALY
	CERTIFICATE OF AWALYSIS
	ATE
1	RTIFIC
	CER

IT ENVIRONMENTAL (AUST) P/L

14/05/2001

te of Issue: b Batch:

ent:

ES27983

tch:

..... SAMPLE IDENTIFICATION t 04/05/2001 <0.2 <0.2 <0.2 1510 1780 <0.2 <0.2 <0.2 2 2 95 94 93 11.7 SP3 2 04/05/2001 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 10.0 98 95 <50 538 229 SP2 \heartsuit -LOR 0.2 2 50 100 0.2 0.2 0.2 0.1 Laboratory I.D. Date Sampled mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg VOLATILE TPH/BTEX COMPOUND SURRDGATES UNIT mg/kg mg/kg mg/kg % % % % TOTAL PETROLEUM HYDROCARBONS ANALYSIS DESCRIPTION Moisture Content (dried @ 103'C) 4-Bromofluorobenzene 1.2-Dichloroethane-D4 meta- & para-Xylene C10 - C14 Fraction C15 - C28 Fraction C29 - C36 Fraction C6 - C9 Fraction Chlorobenzene Ethylbenzene ortho-Xylene Toluene-D8 Benzene Toluene ent Reference: BTEX THOD 30S-SS 30S-SS 30S-SS 30S-S05 30-SS 30-SS 30-SS 30-SS :0-SS SS-0; 1-00 1-SS 1-55 1-SS 1-25 SS-0: ъ

ALS Environmental

Australian Laboratory Services Pty Ltd (ABN 84 009 936 029)

o, oť Page 5

	ich: 5 Baich:	ES27983)	gl	QUALITY CONTROL-REPORT	CONTE	SOL-RE	EPORT			A.	
IT ENVIRONMENTAL (AUST) P/L 100 101 101 102 103 iference: Laboratory I.D. 100 101 102 103 ANALYSIS DESCRIPTION UNIT LOR BLAKK 850652001 08/055201 08/055201 08/055201 08/055201 08/055201 08/055201 08/055201 08/055201 08/055201 08/055201 08/055201 08/055201 08/055201 08/055201 08/055201 08/055201 08/05520	te of Iss												ALS	•
Iference: Laboratory I.D. 100 101 102 103 ANALYSIS DESCRIPTION UNIT LOR BLANK SSC5/2001 08/05/2001 07/05/201 01/05/201	ent:		TAL (AUST	T) P/L										×
Laboratory LD. 100 101 102 08/05/2001 103 Date Sampled 08/05/2001 08/05/20/2	ent Ref	erence:												
Laborationy LD. 100 101 102 103 103 Date Sampled 08/05/2001	-								SAMPLE IDE	NTIFICATION	-	2 	-	
Date Sampled 08/05/2001 08/05			Laborator	y I.D.	100	101	102		104	-	ĸ	ä	74	Ť
Moisture Content (dried @ 103°C) MCTHITGS10 MTPHITGS10 MTPHITGS10 MTPHITGS10 MTPHITGS10 Moisture Content (dried @ 103°C) % 0.11 LOR BLANK SCS % REC DCS % REC MS % REC Moisture Content (dried @ 103°C) % 0.11 — — — — — TOTAL PETROLEUM HYDROCARBONS mg/kg 2 <2			Date Sam	pled	08/05/2001	08/05/2001	08/05/2001		08/05/2001				Si	
ANALYSIS DESCRIPTION UNIT LOR BLANK SCS %, REC DCS %, REC MS %, REC Moisture Content (dried @ 103°C) % 0.1 — … <t< td=""><td></td><td></td><td></td><td></td><td>METHOD</td><td>NTPHT2610</td><td>NTPHT2610</td><td>_</td><td>NTPHT2610</td><td>1</td><td></td><td></td><td></td><td></td></t<>					METHOD	NTPHT2610	NTPHT2610	_	NTPHT2610	1				
Moisture Content (dried @ 103°C) % 0.1 — … 107% 107% 107% 107% 107% 107% 107% 107% 107% 107% 107% 107% 107% 107% 107% 107% 107% 107% <t< td=""><td>HOD</td><td>ANALYSIS DESCRIPTION</td><td>UNIT</td><td>LOR</td><td>BLANK</td><td>SCS % REC</td><td>DCS % REC</td><td></td><td>MSD % REC</td><td></td><td></td><td>_</td><td></td><td></td></t<>	HOD	ANALYSIS DESCRIPTION	UNIT	LOR	BLANK	SCS % REC	DCS % REC		MSD % REC			_		
Moisture Content (dried @ 103°C) % 0.1 — I IO								U	HECKS AND	SPIKES				
Moisture Content (dried @ 103°C) % 0.1 — …								÷				_		
TOTAL PETROLEUM HYDROCARBONS mg/kg 2 <2 98.0% 102% 99.0% 107% 99.0% 107% 99.0% 107% 99.0% 107% 99.0% 107% 107% 107% 107% 107% 107% 107% 107% 107% 107% 107% 107% 107% 107% 107% 107% 105% 107% 105% </td <td>10</td> <td>Moisture Content (dried @ 103'C)</td> <td>%</td> <td>0.1</td> <td>l</td> <td>I</td> <td>1</td> <td>1</td> <td>I</td> <td></td> <td></td> <td></td> <td></td> <td></td>	10	Moisture Content (dried @ 103'C)	%	0.1	l	I	1	1	I					
C6 - C9 Fraction mg/kg 2 <2 98.0% 102% 99.0% 107% 99.0% 107% 99.0% 107% 99.0% 107% 99.0% 107% 99.0% 107% 99.0% 107% 99.0% 107% 99.0% 107% 99.0% 107% 99.0% 107% 99.0% 106% 93.0% 106% 93.0% 106% 93.0% 106% 93.0% 106% 93.0% 106% 93.0% 106% 93.0% 106% 93.0% 106% 93.0% 106% 93.0% 106% 93.0% 101% 106% 93.0% 101% 106% 93.0% 101% 106% 93.0% 101% <th101%< th=""> 101% 101%<td>1-55</td><td>TOTAL PETROLEUM HYDROCARBONS</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th101%<>	1-55	TOTAL PETROLEUM HYDROCARBONS												
C10 - C14 Fraction mg/kg 50 <50 90.0% 92.0% 107% C15 - C28 Fraction mg/kg 100 <100	1-5.5	C6 - C9 Fraction	mg/kg	2	Ŷ	98.0%	102%	%0 [.] 66	98.0%					
C15 - C28 Fraction mg/kg 100 <100 <100 93.0% 106% C29 - C36 Fraction mg/kg 100 <100	- 2 2 2 2 2	C10 - C14 Fraction	mg/kg	50	<50	%0.06	92.0%	107%	110%					
C29 - C36 Fraction mg/kg 100 <100 108% 109% $$ BTEX mg/kg 0.2 <0.2	1-5.5	C15 - C28 Fraction	mg/kg	100	<100	%0.06	93.0%	106%	103%					
BTEX mg/kg 0.2 < 0.2 108% 101% 108% 101% 108% 101% 108% 101% 108% 101% 108% 101% 108% 101% 108% 101% 108% 101% 108% 101% 100% <td>1-SS</td> <td>C29 - C36 Fraction</td> <td>mg/kg</td> <td>100</td> <td><100</td> <td>108%</td> <td>109%</td> <td>1</td> <td>I</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1-SS	C29 - C36 Fraction	mg/kg	100	<100	108%	109%	1	I					
Benzene mg/kg 0.2 <0.2 108% 101% 108% Toluene mg/kg 0.2 <0.2	SS-0:	BTEX							10101					
Toluene mg/kg 0.2 <0.2 99.0% 95.0% 101% Chlorobenzene mg/kg 0.2 <0.2	SS-03	Benzene	mg/kg	0.2	<0.2	108%	101%	108%	704%					
Chlorobenzene mg/kg 0.2 <0.2 96.0% 98.0% 95.0% 96.0% 95.0% 96.0% 95.0% 96.0%	55-05	Toluene	mg/kg	0.2	<0.2	%0.66	95.0%	101%	99.0%					
Ethylbenzene mg/kg 0.2 <0.2 100% 99.0% mela- & para-Xylene mg/kg 0.2 <0.2	SS-08	Chlorobenzene	mg/kg	0.2	<0.2	<u>96.0%</u>	98.0%	95.0%	%0.66					
meta- & para-Xylene mg/kg 0.2 <0.2 115% 101% ortho-Xylene mg/kg 0.2 <0.2	30-55	Ethvlbenzene	mg/kg	0.2	<0.2	100%	%0'66	1	1					
ortho-Xylene mg/kg 0.2 <0.2 100% 100% VOLATILE TPH/BTEX COMPOUND SURRDGATES 0.2 <0.2	30-SS	meta- & para-Xylene	mg/kg	0.2	<0.2	115%	101%	I	I					
VOLATILE TPH/IBTEX COMPOUND SURRPGATES 1 100 99 103 98 1.2-Dicinioroethane-D4 % 1 96 105 94 Toluene-D8 % 1 96 100 101 90 4-Romofiliorohenzene % 1 96 100 101 90	30-SS	ortho-Xvlene	mg/kg	0.2	<0.2	100%	100%	1	-					
1.2-Dichloroethane-D4 % 1 100 99 103 98 Toluene-D8 % 1 96 105 105 94 4-Romofiluorohenzene % 1 96 100 101 90	80S-S08	VOLATILE TPH/BTEX COMPOUND SURR	OGATES						2					
Toluene-D8 % 1 96 105 105 94 4-Bronnofiluorohenzene % 1 96 100 101 90	80.5-5.5	1.2-Dichloroethane-D4	%	-	100	66	103	86.5	¥ 8					3
4-Bromofilionohenzene % 1 96 100 101 90	20-2-2-2	Toluene-D8	%	-	96	105	105	94	8					-
	80.S-S.S	4-Bromofluorobenzene	%	1	96	100	101	60	81				-	

ES27983

ALS Environmental

Australian Laboratory Services Pty Ltd (ABN 84 009 936 029)

Page 6 of 9

SYDNEY

08/05/2001

14/05/2001

SOIL

2

ALS Environmental <u>CERTIFICATE OF ANALYSIS</u>

Batch: Sub Batch: ES27983 2

LABORATORY:

SAMPLE TYPE:

No. of SAMPLES:

DATE RECEIVED:

DATE COMPLETED:

CONTACT: M BENNETT CLIENT: IT ENVIRONMENTAL (AUST) P/L ADDRESS: 17 FORRESTER STREET

KINGSGROVE NSW 2208

ORDER No.: J109264B

ROJECT:

COMMENTS

Samples analysed on an as received basis. Results reported on a dry

weight basis.

NOTES

This is the Final Report and supersedes any preliminary reports with this batch number. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: SYDNEY

Address 277-289 Woodpark Road SMITHFIELD NSW 2164 Phone:61-2-8784 8555Fax:61-2-8784 8500

Email: brianw@als.com.au

Signatory

LABORATORIES

AUSTRALASIA

Brisbane Melbourne Sydney Newcastle Auckland

Hong Kong Singapore Kuala Lumpur Bogor

AMERICAS

Vancouver Santiago Antofagasta Lima This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full.

Searce: 1405/2001 Effertor: 1405/2001 Effertor: Sampled MALVISIS DESCRIPTION UNIT Lob originy LD. Annu/VISIS DESCRIPTION UNIT Dols Sampled Annu/VISIS DESCRIPTION UNIT Dols Sampled Sampled Annu/VISIS DESCRIPTION <t< th=""><th>b Batch:</th><th>ان کی اور اور اور اور اور اور اور اور اور اور</th><th></th><th></th><th>)</th><th>CER</th><th>CERTIFICATE OF ANALYSIS</th><th>AL A</th></t<>	b Batch:	ان کی اور)	CER	CERTIFICATE OF ANALYSIS	AL A
ANALYSIS DESCRIPTION 1 2 SAMPLE IDENTIFICATION Date Sampled Date Sampled 972 973 ANALYSIS DESCRIPTION UNIT LOR 972 973 AMALYSIS DESCRIPTION UNIT LOR 975 973 AMARY DESTRACOMARCES monte 005	ite of Iss ient:		NTAL (AUST	1/d (_			~	(ALS)
AMALYSIS DESCRIPTION Unstanting (unstant) 1 2 SAMPLE DENTIFICATION Date Sampled Unstanting (unstant) unstanting (unstant) unstanting (unstant) unstanting (unstant) unstanting (unstant) Moleture Content (dead (g) (13C) w 0.1 1.0 1.1 2 unstanting (unstant) unstanting (unstan	ient Ref	erence:						
Matrix Date Sample 0405/301 4405/301 4405/301 AMALYSIS DESCRIPTION UNIT LOR 972 973 AMALVSIS DESCRIPTION UNIT LOR 972 973 Mediane Content (freed @ 107C) % 0.1 10.0 11.7 Mediane Content (freed @ 107C) % 0.1 10.0 11.7 Mediane Content (freed @ 107C) % 0.1 10.0 11.7 Mediane Content (freed @ 107C) % 0.1 10.0 11.7 Anterpropriation mg/g 0.05 -0.05 -0.05 -0.05 Accordiorupint free mg/g 0.05 -0.05 -0.05 -0.05 <			l ahoraton			۰ ۲		
ANALYSIS DESCRIPTION UNIT LOR PP2 2 ANALYSIS DESCRIPTION UNIT LOR 0.1 10.0 POLYNUCLEAR AROMATICS mg/kg 0.05 <0.05			Date Sam	pled	04/05/2001	04/05/2001	: 1	- t
Moisture Content (dried @ 103°C) % 0.1 10.0 POLYNUCLEAR AROMATICS mg/kg 0.05 <0.05	THOD	ANALYSIS DESCRIPTION	UNIT	LOR	270	0-10 0		
Naphtitalene mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	5 58-SS	Moisture Content (dried @ 103'C) POLYNUCLEAR AROMATICS	%	0.1	10.0	11.7		
2-Methylnaphthalene $mg/kg0.05<0.052-Chloronaphthalenemg/kg0.05<0.05$	5B-SS	Naphthalene	mg/kg	0.05	<0.05	<0.05		
2-Chloronaphthalenemg/kg0.05<0.05<0.05Acenaphthylenemg/kg0.05<0.05	5B-SS	2-Methylnaphthalene	mg/kg	0.05	<0.05	0.06		
Acenapititylenemg/kg0.05 < 0.05 Acenapithenemg/kg0.05 < 0.05 Fluorenemg/kg0.05 < 0.05 Fluoranthenemg/kg0.05 < 0.05 Anthracenemg/kg0.05 < 0.05 Anthracenemg/kg0.05 < 0.05 Fluoranthenemg/kg0.05 < 0.05 Chrysenemg/kg0.05 < 0.05 Benzolo) & (k)fluoranthenemg/kg0.05 < 0.05 Benzola)pyrenemg/kg0.05 < 0.05 Benzola)pyrenemg/kg0.05 < 0.05 Sakethylcholanthrenemg/kg0.05 < 0.05 Indeno(1.2.3-cd)pyrenemg/kg0.05 < 0.05 Benzolg.h.i)perylenemg/kg0.05 < 0.05 SaksErNeUTRAL EXTRACTABLE SURROGATES%1 $%$ Nitrobenzene-D5%1 $%$ 1Anthracene-d10%1 $%$ 1Anthracene-d10%1 $%$ 1Anthracene-d10%1 $%$ 1Anthracene-d10 $%$ 1 $%$ 1Anthracene-d10 $%$ 1 $%$ 1Anthracene-d10 $%$ 1 $%$ 1Anthracene-d10 $%$ 1 $%$ <td>5B-SS</td> <td>2-Chloronaphthalene</td> <td>mg/kg</td> <td>0.05</td> <td><0.05</td> <td><0.05</td> <td></td> <td></td>	5B-SS	2-Chloronaphthalene	mg/kg	0.05	<0.05	<0.05		
Acenaphritenemg/kg 0.05 < 0.05 < 0.05 Fluorenemg/kg 0.05 < 0.05 < 0.05 < 0.05 Fluoranthenemg/kg 0.05 < 0.05 < 0.05 < 0.05 Antitracenemg/kg 0.05 < 0.05 < 0.05 < 0.05 Fluoranthenemg/kg 0.05 < 0.05 < 0.05 < 0.05 Pyrenemg/kg 0.05 < 0.05 < 0.05 < 0.05 Pyrenemg/kg 0.05 < 0.05 < 0.05 < 0.05 Chrysenemg/kg 0.05 < 0.05 < 0.05 < 0.05 Benzolo) & (k)fluoranthenemg/kg 0.05 < 0.05 < 0.05 Benzolo) Syrenemg/kg 0.05 < 0.05 < 0.05 Benzola)pyrenemg/kg 0.05 < 0.05 < 0.05 Benzola)huracenemg/kg 0.05 < 0.05 < 0.05 Benzola)huracenemg/kg 0.05 < 0.05 < 0.05 Benzola)huracene 0.05 < 0.05 < 0.05 < 0.05 Benzola)huracene <td< td=""><td>5B-SS</td><td>Acenaphthylene</td><td>mg/kg</td><td>0.05</td><td><0.05</td><td><0.05</td><td></td><td></td></td<>	5B-SS	Acenaphthylene	mg/kg	0.05	<0.05	<0.05		
Fluorene mg/kg 0.05 <0.05 Phenanthrene mg/kg 0.05 <0.05	15B-SS	Acenaphthene	mg/kg	0.05	<0.05	<0.05		
Phenanthrene mg/kg 0.05 <0.05 Anthracene mg/kg 0.05 <0.05	SB-SS	Fluorene	mg/kg	0.05	<0.05	<0.05		
Antifracene mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	'5B-SS	Phenanthrene	mg/kg	0.05	<0.05	0.07		
Fluoranthene mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	'5B-SS	Anthracene	mg/kg	0.05	<0.05	<0.05		
Pyrene mg/kg 0.05 <0.05 N-2-Fluorenylacetamide mg/kg 0.05 <0.05	SS-85.	Fluoranthene	mg/kg	0.05	<0.05	0.06		
N-2-Fluorenylacetamidemg/kg 0.05 < 0.05 Benz(a)anthracenemg/kg 0.05 < 0.05 Chrysenemg/kg 0.05 < 0.05 Chrysenemg/kg 0.05 < 0.05 Chrysenemg/kg 0.05 < 0.05 Benz(a)pyrenemg/kg 0.05 < 0.05 7.12-Dimethylbenz(a)anthracenemg/kg 0.05 < 0.05 3-Methylcholanthrenemg/kg 0.05 < 0.05 3-Methylcholanthrenemg/kg 0.05 < 0.05 Indeno(1.2.3-cd)pyrenemg/kg 0.05 < 0.05 Dibenz(a.h)anthracenemg/kg 0.05 < 0.05 Benzo(g.h.i)perylenemg/kg 0.05 < 0.05 Nitrobenzene-D4 $\%$ 1 93 Anthracene-d10 $\%$ 1 94 Anthracene-d10 $\%$ 1 94	75B-SS	Pyrene	mg/kg	0.05	<0.05	0.11		
Benz(a)anthracene mg/kg 0.05 <0.05 Chrysene mg/kg 0.05 <0.05	75B-SS	N-2-Fluorenylacetamide	mg/kg	0.05	<0.05	<0.05		
Chrysene mg/kg 0.05 <0.05 Benzo(b) & (k)fluoranthene mg/kg 0.1 <0.1	75B-SS	Benz(a)anthracene	mg/kg	0.05	<0.05	<0.05		
Benzo(b) & (k)fluoranthene mg/kg 0.1 <0.1	75B-SS	Chrysene	mg/kg	0.05	<0.05	<0.05		
7.12-Dimethylbenz(a)anthracene mg/kg 0.05 <0.05	75B-SS	Benzo(b) & (k)fluoranthene	mg/kg	0.1	<0.1	<0.1		
Benzo(a)pyrene mg/kg 0.05 <0.05 3-Methylcholanthrene mg/kg 0.05 <0.05	75B-SS	7.12-Dimethylbenz(a)anthracene	mg/kg	0.05	<0.05	<0.05		
3-Methylcholanthrene mg/kg 0.05 <0.05	75B-SS	Benzo(a)pyrene	mg/kg	0.02 202	<0.0>	50.0>		
Indeno(1.2.3-cd)pyrene mg/kg 0.05 <0.05 Dibenz(a.h)anthracene mg/kg 0.05 <0.05	75B-SS	3-Methylcholanthrene	mg/kg	c0.0	c0.0>	-0.05 -0.05		
Dibenz(a.h)anthracene mg/kg 0.05 <0.05 Benzo(g.h.i)perylene mg/kg 0.05 <0.05	75B-SS	Indeno(1.2.3-cd)pyrene	mg/kg	cn.0	c0.0>	CU.U>		
Benzo(g.h.i)perylene mg/kg 0.05 <0.05	75B-SS	Dibenz(a.h)anthracene	mg/kg	0.05	<0.05	c0.0>		
BASE/NEUTRAL EXTRACTABLE SURROGATES Nitrobenzene-D5 1.2-Dichlorobenzene-D4 2-Fluorobipheny1 Anthracene-d10 b-Ternhenvl-D14 112	75B-SS	Benzo(g.h.i)perylene	mg/kg	0.05	<0.05	<0.05		
Nitrobenzene-D5 % 1 93 1.2-Dichlorobenzene-D4 % 1 86 2-Fluorobiphenyl % 1 94 Anthracene-d10 % 1 95 n-Ternhenvl-D14 % 1 112	751-SS	BASE/NEUTRAL EXTRACTABLE SURR(OGATES					
1.2-Dichlorobenzene-D4 % 1 86 2-Fluorobiphenyl % 1 94 Anthracene-d10 % 1 95 n-Temhenvl-D14 % 1 112	75T-SS	Nitrobenzene-D5	%	-	63	95		
2-Fluorobiphenyl % 1 94 Anthracene-d10 % 1 95 n-Temhenyl-D14 % 1 112	75T-SS	1.2-Dichlorobenzene-D4	%	-	86	88		
Anthracene-d10 % 1 95 % 1.12 % 1.12	75T-SS	2-Fluorobiphenyl	%	-	94	103		
n-Ternhenvl-D14 % 1 112	75T-SS	Anthracene-d10	%	-	95	101		
principication	175T-SS	p-Terphenyl-D14	%	-	112	105		

ALS Environmental

Australian Laboratory Services Pty Ltd (ABN 84 009 936 029)

Page 8 of 9

te of Issue:		1171 (111									、ーー・シン
ient Reference [.]	H ENVIRONMENTAL (AUST) P/L	NIAL (AU	91) P/L								
		100	-					SAMPLE IDE	SAMPLE IDENTIFICATION	а н У-	14-
		Laboratory I.U. Date Sampled	ory I.U. mnled	100 08/05/2001	101 08/05/2001	102 08/05/2001	103 08/05/2001	104 08/05/2001			
				METHOD	NSVOCS1554	NSVOS1554	NSVOCS1554 NSVOCS1554	NSVOCS1554			*
ТНОБ	ANALYSIS DESCRIPTION	UNIT	LOR	BLANK	SCS % REC	DCS % REC	MS % REC	MSD % REC			
							0	CHECKS AND SPIKES	SPIKES		
5 5B-SS	Moisture Content (dried @ 103'C) POLYNUCLEAR AROMATICS	%	0.1	I	1	I	I	I			
5B-SS	Naphthalene	mg/kg	0.05	<0.05	85.8%	83.3%	I				
5B-SS	2-Methylnaphthalene	mg/kg	0.05	<0.05	81.9%	78.9%	ļ				
	2-Chloronaphthalene	mg/kg	0.05	<0.05	77.4%	75.4%	1				
SB-SS	Acenaphthylene	mg/kg	0.05	<0.05	77.4%	73.3%	•	-			
75B-SS	Acenaphthene	mg/kg	0.05	<0.05	88.2%	85.7%	102%	101%			
75B-SS	Fluorene	mg/kg	0.05	<0.05	86.4%	84.2%	I	•			
5B-SS	Phenanthrene	mg/kg	0.05	<0.05	91.8%	92.4%	1	1			
75B-SS	Anthracene	mg/kg	0.05	<0.05	89.4%	88.6%	1	1			
5B-SS	Fluoranthene	mg/kg	0.05	<0.05	89.2%	86.4%					
75B-SS	Pyrene	mg/kg	0.05	<0.05	91.5%	88.0%	107%	106%			
75B-SS	N-2-Fluorenylacetamide	mg/kg	0.05	<0.05	81.9%	82.4%		1			
75B-SS	Benz(a)anthracene	mg/kg	0.05	<0.05	88.3%	85.0%	1	1			
75B-SS	Chrysene	mg/kg	0.05	<0.05	88.2%	85.4%	I	1			
75B-SS	Benzo(b) & (k)fluoranthene	mg/kg	0.1	<0.1	88.8%	85.8%		1			
75B-SS	7.12-Dimethylbenz(a)anthracene	mg/kg	0.05	<0.05	82.5%	82.7%	I	1			
75B-SS	Benzo(a)pyrene	mg/kg	0.05	<0.05	88.5%	85.8%	١	1			
75B-SS	3-Methylcholanthrene	mg/kg	0.05	<0.05	91.9%	86.7%					
75B-SS	Indeno(1.2.3-cd)pyrene	mg/kg	0.05	<0.05	85.6%	82.3%		1			
75B-SS	Dibenz(a.h)anthracene	mg/kg	0.05	<0.05	87.1%	82.8%	ļ	ł			
75B-SS	Benzo(g.h.i)perylene	mg/kg	0.05	<0.05	87.3%	84.1%	ļ				
75T-SS	BASE/NEUTRAL EXTRACTABLE SURROGATES	GATES									
75T-SS	Nitrobenzene-D5	%	٣	88	86	82	62	22			
75T-SS	1.2-Dichlorobenzene-D4	%	-	62	22	78	71	71			
75T-SS	2-Fluorobiphenyl	%	-	78	72	69	26	26			
751-55	Anthracene-d10	%	-	85	62	80	80	80			
75T-SS	p-Terphenyl-D14	%	-	6	83	85	82	8			

QUALITY CONTROL-REPORT

E.... 983 2

ib Batch:

ALS Environmental

Australian Laboratory Services Pty Ltd (ABN 84 009 936 029)

Page 9 of 9

ALS Environmental

ORGANICS QUALITY CONTROL REPORT

BATCH NO: ES27983

DATE BATCH RECEIVED: 9/05/01

CLIENT: IT Environmental, Sydney

DATE BATCH COMPLETED: 11/05/01

PROJECT: J109264B

Method	Test	Matrix	Method	Reference	QC Lot Number	Date	Date Samples
Code			Extraction	Analysis		Samples Extracted	Analysed
EP-071 EP-071/80	TPH(SV) TPH(V)/BTEX	Soil Soil	Tumbler USEPA 5030A	USEPA 8015A USEPA 8260A	NTPHT2610 NVOCS2610	9/05/01 9/05/01	9/05/01 9/05/01
EP-075	SV Scan	Soil	Tumbler	USEPA 8270B	NSVOCS1554	9/05/01	9/05/01

Where applicable, internal standards are added to sample extracts prior to instrumental analysis. Absolute peak areas and retention times fall within the criteria specified in the individual methods.

Abbreviations: SV = semivolatile, V = volatile

*: In-house methods

BATCH QUALITY CONTROL - CONTROL SPIKE/DUPLICATE

ALS EP-071 : Total Petroleum Hydrocarbons by Fractions

Vol QC Lot : NVOCS2610 Semivol QC Lot : NTPHT2610 MATRIX : Soil

	ватсн	Blank	Spike		Spike I	Results		Col	ntrol Lir	nits
COMPOUND	ADJ.	Conc.	Conc.	SCS	DCS	Av.	RPD	Reco	overy	RPD
	(MDL)			Conc.	Conc.	Rec.			/o	
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%	%	Low	High	%
C6-C9	2.0	<lor< td=""><td>20</td><td>19.6</td><td>20.3</td><td>100</td><td>4</td><td>90</td><td>108</td><td>20</td></lor<>	20	19.6	20.3	100	4	90	108	20
C10-C14	25	<lor< td=""><td>200</td><td>180</td><td>184</td><td>91</td><td>2</td><td>74</td><td>121</td><td>20</td></lor<>	200	180	184	91	2	74	121	20
C15-C28	50	<lor< td=""><td>200</td><td>180</td><td>186</td><td>92</td><td>3</td><td>68</td><td>129</td><td>20</td></lor<>	200	180	186	92	3	68	129	20
C29-C36	50	<lor< td=""><td>200</td><td>216</td><td>218</td><td>108</td><td>1</td><td>69</td><td>125</td><td>20</td></lor<>	200	216	218	108	1	69	125	20

COMMENTS:

1) The control limits are based on ALS laboratory statistical data (Method QWI-ORG/07).

2) * : Recovery or RPD falls outside the recommended control limit.

3) MDL = Method Detection Limit

4) LOR = Level Of Reporting

ALS EP-071 : Total Petroleum Hydrocarbons by Fractions

SEMIVOLATILES QC LOT NO.: VOLATILES QC LOT No.:

NTPHT2610 NVOCS2610 ANALYST: A.ROSSI MATRIX : Soil

	QC DUP	LICATE RESUL	TS
COMPOUND	ES27901	ES27901	RPD
	8	BD	
	mg/kg	mg/kg	%
C 6-C 9	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
C10-C14	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
C15-C28	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
C29-C36	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	

ALS EP-071 : Total Petroleum Hydrocarbons by Fractions

SEMIVOLATILES QC LOT NO.: VOLATILES QC LOT No.:

NTPHT2610 NVOCS2610 ANALYST: A.ROSSI MATRIX : Soil

	QC DUP	LICATE RESU	LTS
COMPOUND	ES27901	ES27901	RPD
	9	9D	
	mg/kg	mg/kg	%
C 6-C 9	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
C10-C14	<lor< td=""><td><lor< td=""><td>-</td></lor<></td></lor<>	<lor< td=""><td>-</td></lor<>	-
C15-C28	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
C29-C36	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	

BATCH QUALITY CONTROL - MATRIX SPIKE/DUPLICATE

ALS EP-071 : Total Petroleum Hydrocarbons by Fractions

Vol QC Lot : NVOCS2610 Semivol QC Lot : NTPHT2610	SPIKED SAMPLE : MATRIX :	
--	-----------------------------	--

	Sample	Spike		Spike Re	sults		Control
COMPOUND	Results	Level	MS	MSD	Av.	RPD	Limits
			Conc	Conc	Rec.		
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	RPD
C6-C9	<lor< td=""><td>10</td><td>9.9</td><td>9.8</td><td>99</td><td>1</td><td>20</td></lor<>	10	9.9	9.8	99	1	20
C10-C14	<lor< td=""><td>430</td><td>458</td><td>474</td><td>108</td><td>з</td><td>20</td></lor<>	430	458	474	108	з	20
C15-C28	<lor< td=""><td>1570</td><td>1668</td><td>1610</td><td>104</td><td>4</td><td>20</td></lor<>	1570	1668	1610	104	4	20
C29-C36	<lor< td=""><td>N/A</td><td></td><td></td><td></td><td></td><td></td></lor<>	N/A					

COMMENTS :

1) LOR: level of reporting

2) The control limits are based on ALS laboratory statistical data. (Method QWI-ORG/06)

3)*: Recovery or RPD falls outside of the recommended control limits.

ALS EP-080 : BTEX ANALYSIS

QC Lot No. : NVOCS2610 MATRIX :

Soil

Analyst : H.CAVANAUGH

	QC D	UPLICATE RESU	LTS
COMPOUND	ES27901	ES27901	RPD
	8	8D	
	mg/kg	mg/kg	%
Benzene	<lor< td=""><td><lor< td=""><td>ni si</td></lor<></td></lor<>	<lor< td=""><td>ni si</td></lor<>	ni si
Toluene	<lor< td=""><td><lor< td=""><td>115</td></lor<></td></lor<>	<lor< td=""><td>115</td></lor<>	11 5
Chlorobenzene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
Ethylbenzene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
m- & p-Xylene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
o-Xylene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	

ALS EP-080 : BTEX ANALYSIS

QC Lot No. : NVOCS2610 MATRIX :

 \sim

Soil

Analyst : H.CAVANAUGH

	QC DL	UPLICATE RESU	JLTS
COMPOUND	ES27901	ES27901	RPD
	9	9D	
	mg/kg	mg/kg	%
Benzene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
Toluene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
Chlorobenzene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
Ethylbenzene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
m- & p-Xylene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
o-Xylene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	

BATCH QUALITY CONTROL - MATRIX SPIKE/DUPLICATE

ALS EP-080 : BTEX ANALYSIS

QC Lot No. : NVOCS2610 SPIKED SAMPLE : ES27901-9 MATRIX : Soil

	Sample	Spike		Spike Re	sults		Control
COMPOUND	Results	Level	MS	MSD	Av.	RPD	Limits
			Conc	Conc	Rec.		
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	RPD
Benzene	<lor< td=""><td>2.5</td><td>2.7</td><td>2.6</td><td>106</td><td>4</td><td>20</td></lor<>	2.5	2.7	2.6	106	4	20
Toluene	<lor< td=""><td>2.5</td><td>2.5</td><td>2.5</td><td>100</td><td>3</td><td>20</td></lor<>	2.5	2.5	2.5	100	3	20
Chlorobenzene	<lor< td=""><td>2.5</td><td>2.4</td><td>2.4</td><td>95</td><td>0</td><td>20</td></lor<>	2.5	2.4	2.4	95	0	20

COMMENTS :

1) LOR: level of reporting

2) The control limits are based on ALS laboratory statistical data. (Method QWI-ORG/06)

3) * : Recovery or RPD falls outside of the recommended control limits.

BATCH QUALITY CONTROL -- CONTROL SPIKE/DUPLICATE

ALS EP-075 : Semivolatile Organic Compounds

QC LOT No. : MATRIX:

NSVOCS1554 Soils

ANALYST ALICE TAT

	Blank	Spike		SPIKE QC	RESULTS		Co	ntrol Li	nits
	Conc	Level	SCS	DCS	Average	RPD	F	lec.	RPD
			Rec.	Rec.	Rec.				
COMPOUND	mg/kg	mg/kg		%	%	%	Low	High	%
EP-075A : PHENOLS	中国的新闻		推得的時	的 一种人的		制制管理		SP (4) - 40	國際語
Phenol	<0.025	0.25	115	110	113	4.44	78.7	134	0 - 35
2-Chlorophenol	<0.025	0.25	99.3	94.8	97.1	4.64	66.4	130	0 - 35
2-Methylphenol	<0.025	0.25	100	97.4	98.7	2.63	67.9	126	0 - 35
4-Methylphenol	<0.025	0.5	93	87.8	90.4	5.75	54.4	132	0 - 35
2-Nitrophenol	<0.025	0.25	60.2	74.7	67.5	21.5	67	135	0 - 35
2,4-Dimethylphenol	<0.025	0.25	90.2	83.3	86.8	7.95	23.9	106	0 - 35
2,4-Dichlorophenol	<0,025	0.25	91	84.5	87.8	7.41	62.6	132	0 - 35
2,6-Dichlorophenol	<0.025	0.25	80.2	81.4	80.8	1.49	65.3	126	0 - 35
4-Chloro-3-methylphenol	<0.025	0.25	87.7	86.6	87.2	1.26	69.7	122	0 - 35
2,4,6-Trichlorophenol	<0.025	0.25	75.2	73.9	74.6	1.74	52.8	133	0 - 35
2,4,5-Trichlorophenol	<0.025	0.25	79.3	78.1	78.7	1.52	60.6	124	0 - 35
Pentachlorophenol	<0.05	0.5	108	99.4	104	8.29	0	112	0 - 35
EP-075B : POLYAROMATIC	IYDROCAF	RBONS			a an				派室
Naphthalene	<0.025	0.25	85.8	83.3	84.6	2.96	67.9	134	0 - 35
2-Methylnaphthalene	<0.025	0.25	81.9	78.9	80.4	3.73	69.8	129	0 - 35
2-Chloronaphthalene	<0.025	0.25	77.4	75.4	76.4	2.62	72.4	125	0 - 35
Acenaphthylene	<0.025	0.25	77.4	73.3	75.4	5.44	70	127	0 - 35
Acenaphthene	<0.025	0.25	88.2	85.7	87	2.88	71.5	128	0 - 35
Fluorene	<0.025	0.25	86.4	84.2	85.3	2.58	72.3	127	0 - 35
Phenanthrene	<0.025	0.25	91.8	92.4	92.1	0.65	77.5	128	0 - 35
Anthracene	<0.025	0.25	89.4	88.6	89	0.9	73.6	127	0 - 35
Fluoranthene	<0.025	0.25	89.2	86.4	87.8	3.19	73.6	129	0 - 35
Pyrene	<0.025	0.25	91.5	88	89.8	3.9	73.4	128	0 - 35
N-2-Fluorenylacetamide	<0.025	0.25	81.9	82.4	82.2	0.61	39.7	152	0 - 35
Benz(a)anthracene	<0.025	0.25	88.3	85	86.7	3.81	72.7	128	0 - 35
Chrysene	<0.025	0.25	88.2	85,4	86.8	3.23	71.3	131	0 - 35
Benzo(b)&(k)fluoranthene	<0.05	0.5	88.8	85.8	87.3	3.44	76.7	124	0 - 35
7,12-Dimethylbenz(a)anthracene	<0.025	0.25	82.5	82.7	82.6	0.24	65.7	126	0 - 35
Benzo(a)pyrene	<0.025	0.25	88.5	85.8	87.2	3.1	73.5	122	0 - 35
3-Methylchloanthrene	<0.025	0.25	91.9	86.7	89.3	5.82	58.3	136	0 - 35
Indeno(1,2,3-cd)pyrene	<0.025	0.25	85.6	82.3	84	3.93	67.4	130	0 - 35
Dibenz(a,h)anthracene	<0.025	0.25	87.1	82.8	85	5.06	66	130	0 - 35
Benzo(g,h,i)perylene	<0.025	0.25	87.3	84.1	85.7	3.73	70.2	130	0 - 35

BATCH QUALITY CONTROL -- CONTROL SPIKE/DUPLICATE

ALS EP-075 : Semivolatile Organic Compounds

QC LOT No. : MATRIX: NSVOCS1554

ANALYST ALICE TAT

Soils

	Blank	Blank Spike SPIKE QC RESULTS		Co	Control Limits				
	Conc	Level	SCS	DCS	Average	RPD	R	ec.	RPD
			Rec.	Rec.	Rec.				
COMPOUND	mg/kg	mg/kg	t	%	%	%	Low	High	%
EP-075S : ACID EXTRACT	ABLE SURRC	GATES		肺管结系的引	出,让你的 你的				國際保
2-Fluorophenol	107%	0.5	91.9	92.5	92.2	0.65	24.5	160	0 - 35
Phenol-d6	110%	0.5	105	101	103	3.88	61.6	135	0 - 35
2-Chlorophenol-d4	108%	0.5	98.6	95.6	97.1	3.09	59.8	138	0 - 35
2,4,6-Tribromophenol	77.7%	0.5	79.8	80	79.9	0.25	46.6	128	0 - 35
EP-075T : BASE/NEUTRA	L EXTRACTAE	BLE SURR	OGATES	的的实际				. Ac the	國家的
Nitrobenzene-d5	87.5%	0.5	85.6	81.8	83.7	4.54	75.5	126	0 - 35
1,2-Dichlorobenzene-d4	78.5%	0.5	76.9	77.7	77.3	1.03	62.9	123	0 - 35
2-Fluorobiphenyl	78.1%	0.5	71.9	68.8	70.4 *	4.41	70.7	127	0 - 35
Anthracene-d10	85.2%	0.5	79.3	80.1	79.7	1	73.5	130	0 - 35
4-Terphenyl-d14	90.3%	0.5	83.2	85.2	84.2	2.38	70.3	133	0 - 35

ALS EP-075 : Semivolatile Organic Compounds

QC LOT No. :	NSVOCS1554
MATRIX :	Soils
MATRIX : ANALYST:	ALICE TAT

		QC DUPLICA	TE RESULTS	RPD		
		ES27901	ES27901			
COMPOUND	LOR	10	10D	RPD	Cont. Limit	
	mg/kg	mg/kg	mg/kg		%	
EP-075A : PHENOLS	6.3.2 5 31	是物理器的。	philipping and the	- 1900 (900 (75)	A SECTION REPORT	
Phenol	0.025	<0.025	<0.025	n/a		
2-Chlorophenol	0.025	<0.025	<0.025	n/a		
2-Methylphenol	0.025	<0.025	<0.025	n/a		
4-Methylphenol	0.025	< 0.025	<0.025	n/a		
2-Nitrophenol	0.025	< 0.025	< 0.025	n/a		
2,4-Dimethylphenol	0.025	<0.025	<0.025	n/a		
2,4-Dichlorophenol	0.025	< 0.025	<0.025	n/a		
2,6-Dichlorophenol	0.025	< 0.025	<0.025	n/a		
4-Chloro-3-methylphenol	0.025	< 0.025	<0.025	n/a		
2,4,6-Trichlorophenol	0.025	<0.025	<0.025	n/a		
2,4,5-Trichlorophenol	0.025	< 0.025	<0.025	n/a		
Pentachlorophenol	0.05	< 0.05	<0.05	n/a		
EP-075B : POLYNUCLEAR A	ROMATIC H	YDROCARBONS:	國家認識的研究的	A. 19 3. 5	EMS ANTON	
Naphthalene	0.025	<0.025	<0.025	n/a		
2-Methylnaphthalene	0.025	<0.025	<0.025	n/a		
2-Chloronaphthalene	0.025	< 0.025	<0.025	n/a		
Acenaphthylene	0.025	< 0.025	< 0.025	n/a		
Acenaphthene	0.025	<0.025	<0.025	n/a		
Fluorene	0.025	<0.025	<0.025	n/a		
Phenanthrene	0.025	< 0.025	<0.025	n/a		
Anthracene	0.025	<0.025	<0.025	n/a		
Fluoranthene	0.025	<0.025	<0.025	n/a		
Pyrene	0.025	<0.025	<0.025	n/a		
N-2-Fluorenylacetamide	0.025	<0.025	< 0.025	n/a		
Benz(a)anthracene	0.025	<0.025	<0.025	n/a		
Chrysene	0.025	<0.025	<0.025	n/a		
Benzo(b)&(k)fluoranthene	0.05	<0.05	< 0.05	n/a		
7,12-Dimethylbenz(a)anthracene	0.025	<0.025	<0.025	n/a		
Benzo(a)pyrene	0.025	<0.025	<0.025	n/a		
3-Methylchloanthrene	0.025	<0.025	<0.025	n/a		
Indeno(1,2,3-cd)pyrene	0.025	< 0.025	<0.025	n/a		
Dibenz(a,h)anthracene	0.025	<0.025	< 0.025	n/a		
Benzo(g,h,i)perylene	0.025	< 0.025	< 0.025	n/a		

ALS EP-075 : Semivolatile Organic Compounds

QC LOT No. :	NSVOCS1554
MATRIX :	Soils
ANALYST:	ALICE TAT

and the second s					
			TE RESULTS	RPD	
		ES27901	ES27901		
COMPOUND	LOR	10	10D	RPD	Cont. Limit
	mg/kg	mg/kg	mg/kg		%
EP-075S : ACID EXTRAC	TABLE SURRO	GATES	And a state of the second state of the second state of the	the second product	A STATE TO A STATE
2-Fluorophenol	1%	72.8%	87.2%	18	0 - 20
Phenol-d6	1%	83%	92%	10.3	0 - 20
2-Chlorophenol-d4	1%	89.6%	94.4%	5.22	0 - 20
2,4,6-Tribromophenol	1%	64.4%	72.8%	12.2	0 - 20
EP-075T : BASE/NEUTRA	L EXTRACTAB	LE SURROGATES	5.1.5.10%。	子宫油的观察之时	ALC: MARRIER OF
Nitrobenzene-d5	1%	78%	96.1%	20.8	* 0 - 20
1,2-Dichlorobenzene-d4	1%	73%	75%	2.7	0 - 20
2-Fluorobiphenyl	1%	71%	71%	0	0 - 20
Anthracene-d10	1%	81%	83.9%	3.52	0 - 20
4-Terphenyl-d14	1%	72.6%	85.3%	16.1	0 - 20

Note: The permitted range for RPD (relative percent deviation) is specified in ALS Method QWI-EN/38 and is dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR, no limit.

Result between 10 and 20 times LOR, 0% - 50%.

Results > 20 times LOR, 0% - 20%.

ALS EP-075 : Semivolatile Organic Compounds

QC LOT No. :	NSVOCS1554
MATRIX :	Soils
ANALYST:	ALICE TAT

		QC DUPLICA	TE RESULTS	RPD	
		ES27901	ES27901		
COMPOUND	LOR	11	11D	RPD	Cont. Limit
	mg/kg	mg/kg	mg/kg		%
EP-075A : PHENOLS	1 A MAR	1. 1991年前的第三人称单数		心,高级现在。	·法律保护的现在式
Phenol	0.025	<0.025	< 0.025	n/a	
2-Chlorophenol	0.025	< 0.025	< 0.025	n/a	
2-Methylphenol	0.025	< 0.025	< 0.025	n/a	
4-Methylphenol	0.025	<0.025	< 0.025	n/a	
2-Nitrophenol	0.025	< 0.025	<0.025	n/a	
2,4-Dimethylphenol	0.025	< 0.025	<0.025	n/a	
2,4-Dichlorophenol	0.025	< 0.025	< 0.025	n/a	
2,6-Dichlorophenol	0.025	<0.025	<0.025	n/a	
4-Chloro-3-methylphenol	0.025	< 0.025	< 0.025	n/a	
2,4,6-Trichlorophenol	0.025	<0.025	< 0.025	n/a	
2,4,5-Trichlorophenol	0.025	<0.025	< 0.025	n/a	The second second second
Pentachlorophenol	0.05	< 0.05	< 0.05	n/a	
EP-075B : POLYNUCLEAR A	ROMATIC H	YDROCARBONS	·操作。除公司、通行	and the second	
Naphthalene	0.025	<0.025	<0.025	n/a	ACCESSION AND A CONTRACT OF A
2-Methylnaphthalene	0.025	<0.025	< 0.025	n/a	
2-Chloronaphthalene	0.025	< 0.025	< 0.025	n/a	
Acenaphthylene	0.025	< 0.025	<0.025	n/a	
Acenaphthene	0.025	< 0.025	<0.025	n/a	
Fluorene	0.025	<0.025	<0.025	n/a	
Phenanthrene	0.025	<0.025	< 0.025	n/a	
Anthracene	0.025	<0.025	< 0.025	n/a	
Fluoranthene	0.025	<0.025	<0.025	n/a	
^o yrene	0.025	<0.025	<0.025	n/a	
N-2-Fluorenylacetamide	0.025	<0.025	<0.025	n/a	
Benz(a)anthracene	0.025	<0.025	<0.025	n/a	
Chrysene	0.025	<0.025	<0.025	n/a	
Benzo(b)&(k)fluoranthene	0.05	< 0.05	< 0.05	n/a	
7,12-Dimethylbenz(a)anthracene	0.025	<0.025	<0.025	n/a	
Benzo(a)pyrene	0.025	<0.025	<0.025	n/a	
8-Methylchloanthrene	0.025	<0.025	< 0.025	n/a	
ndeno(1,2,3-cd)pyrene	0.025	<0.025	< 0.025	n/a	
Dibenz(a,h)anthracene	0.025	<0.025	< 0.025	n/a	
Benzo(g,h,i)perylene	0.025	< 0.025	< 0.025	n/a	

E	BATCH QUAL	ITY CONTRO	L - DUPLICA	TE	
,	ALS EP-075 : S	emivolatile Orç	ganic Compound	ds	
QC LOT №. : MATRIX : ANALYST:	NSVOCS155 Soils ALICE TAT	54			
		QC DUPLICA	TE RESULTS	RPD	
	LOR	ES27901 11	ES27901 11D	RPD	Cont. Limit
	mg/kg	mg/kg	mg/kg		%
EP-075S : ACID EXTRAC	TABLE SURROG	ATES	線相當時的有些同時	And A State of A	· · · · · · · · · · · · · · · · · · ·
2-Fluorophenol	1%	72.5%	76.9%	5.89	0 - 20
Phenol-d6	1%	82.3%	87.9%	6.58	0 - 20
2-Chlorophenol-d4	1%	85.5%	88.2%	3.11	0 - 20
2,4,6-Tribromophenol	1%	60.3%	79.5%	27.5	* 0 - 20
EP-075T : BASE/NEUTRA	L EXTRACTABL	E SURROGATES	S MAN RANGE MAN	A MARCENCE	DECK REAL MANY
Nitrobenzene-d5	1%	84.7%	91.2%	7.39	0 - 20
1,2-Dichlorobenzene-d4	1%	63.3%	69.4%	9.19	0 - 20
2-Fluorobiphenyl	1%	68%	65.3%	4.05	0 - 20
Anthracene-d10	1%	83%	76.1%	8.67	0 - 20
4-Terphenyl-d14	1%	73.2%	75.9%	3.62	0 - 20

Note: The permitted range for RPD (relative percent deviation) is specified in ALS Method QWI-EN/38 and is dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR, no limit.

Result between 10 and 20 times LOR, 0% - 50%.

Results > 20 times LOR, 0% - 20%.

BATCH QUALITY CONTROL --MATRIX SPIKE/DUPLICATE ALS EP-075 : Semivolatile Organic Compounds NSVOCS1554 ANALYST : QC LOT No. : ALICE TAT MATRIX: Soils Sample ID: ES27901-10 Sample Spike SPIKE QC RESULTS Cont. Limit Results Level MS MSD RPD RPD Average Rec. Rec. Rec. COMPOUND mg/kg mg/kg % % % % % EP-075A : PHENOLS 93.5 93.3 < 0.025 93 0.536 0 - 35 Phenol 1 < 0.025 1 100 98.1 2-Chlorophenol 99.1 1.92 0 - 35 92.7 0 - 35 2-Nitrophenol < 0.025 1 89.2 91 3.85 <0.025 97.7 97.7 97.7 0 - 35 4-Chloro-3-methylphenol 1 0 < 0.05 1 98.1 99.5 98.8 0 - 35 Pentachlorophenol 1.42 EP-075B : POLYAROMATIC HYDROCARBONS < 0.025 102 101 102 0.985 0 - 35 Acenaphthene 1 < 0.025 107 106 107 0.939 0 - 35 Pyrene 1 EP-075S : ACID EXTRACTABLE SURROGATES 91.2 72.8% 0.5 82.7 99.7 18.6 0 - 35 2-Fluorophenol Phenol-d6 83% 0.5 98.5 92.3 95.4 6.5 0 - 35 2-Chlorophenol-d4 89.6% 0.5 93.5 94.5 94 1.06 0 - 35 64.4% 0.5 112 81.5 96.8 31.5 0 - 35 2,4,6-Tribromophenol EP-075T : BASE/NEUTRAL EXTRACTABLE SURROGATES 0.5 79 76.7 77.9 2.95 0 - 35 Nitrobenzene-d5 78% 73% 0.5 70.9 71.1 71 0.282 0 - 35 1,2-Dichlorobenzene-d4 75.5 0 - 35 71% 0.5 76 75.8 0.66 2-Fluorobiphenyl 0.5 80.1 80.3 80.2 0.249 0 - 35 81% Anthracene-d10 82.2 80.4 0 - 35 4-Terphenyl-d14 0.5 81.3 2.21 72.6%

COMMENTS:

1) The RPD control limits are fixed.

2) *: RPD falls outside the recommended control limit.

TO: IT ENVIRONMENTAL (AUST) P/L

17 FORRESTER STREET KINGSGROVE NSW 2208

ATTENTION:M BENNETT

SUBJECT: Analytical results.

BATCH: ES29635-0

DATE: 05/09/01

AUSTRALIAN LABORATORY SERVICES P/L ABN: 84 009 936 029

BUSBANE	SYDNEY	MELBOURNE	NEWCASTLE	AUCKLAND
Tel: 61-7-3243 7222	Tel: 61-2-8784 8555	Tel: 61-3-9538 4444	Tel: 61-2-4968 9433	Tel: 64-9-379 9437
F c: 61-7-3243 7218	Fax: 61-2-8784 8500	Fax: 61-3-9538 4400	Fax: 61-2-4968 0349	Fax: 64-9-379 1449

ALS Environmental

IT ENVIRONMENTAL (AUST) P/L

f :ention M BENNETT irorder SampleType:TCLP LEACHATE Project:

Ĩ

i. . .

Page-no: 1 ENV SYDNEY Batch-no: 29635 Sub-batch:0 No-samples:1 Received: 29/08/01 Checked:

l _I _ihod	Analysis descript	tion	Units	LOR	SP2
f 11 f 12 AL() ALS4 F 005C	Initial pH After HCl pH Extraction Fluid pH After Extract Lead	Number - TCLP	mg/L	0.1 0.1 1 0.1 0.1	6.5 1.7 1 5.0 <0.1

The concentrations reported are those determined on the TCLP leachate. Extraction fluid #1 pH 4.88-4.98.

AUSTRALIAN LABORATORY SERVICES P/L ABN: 84 009 936 029

	RISBANE	SYDNEY	MELBOURNE	NEWCASTLE	AUCKLAND
1	[el: 61-7-3243 7222	Tel: 61-2-8784 8555	Tel: 61-3-9538 4444	Tel: 61-2-4968 9433	Tel: 64-9-379 9437
-	ux: 61-7-3243 7218	Fax: 61-2-8784 8500	Fax: 61-3-9538 4400	Fax: 61-2-4968 0349	Fax: 64-9-379 1449

ALS Environmental

ENVIRONMENTAL (AUST) P/L

1

1. Ject:

1

網世

11 6

ttention: M BENNETT C TOrder i pleType:QUALITY CONTROL Page-no: 1 ENV SYDNEY Batch-no: 29635 Sub-batch:0 No-samples:1 Received: 29/00/01 Checked:

l 10d	Analysis description	Units	LOR	METHOD BLANK	LCS	MS
				29/08/01	29/08/01	29/08/01
LS1	Initial pH		0.1			
7 S	After HCl pH		0.1			535355
a a 🗉	Extraction Fluid Number		1	1		- 199 - 19
ls)	pH After Extract		0.1			
G-0-5C	Lead - TCLP	mg/L	0.1	<0,1	94.0 %	112 %

Results which appear on this report are routine laboratory checks for QUALITY CONTROL purposes.

AUSTRALIAN LABORATORY SERVICES P/L ABN: 84 009 936 029

I USBANE Tel: 61-7-3243 7222 F x: 61-7-3243 7218 **SYDNEY** Tel: 61-2-8784 8555 Fax: 61-2-8784 8500 MELBOURNE Tel: 61-3-9538 4444 Fax: 61-3-9538 4400

 NE
 NEWCASTLE

 4444
 Tel:
 61-2-4968
 9433

 4400
 Fax:
 61-2-4968
 0349

AUCKLAND Tel: 64-9-379 9437 Fax: 64-9-379 1449

FROM	ALS SYDNEY				τc				516					and the lot	-					 -1-						
22135	Perth: Te: (06) 9481 4333 Fax (08) 9487 4122 Level 7, 220 George's Terrace, Perth: MA 5000 Sydney: Jet (02) 9502 4844 Fax (02) 9502 2105 17 Fornester Street, Kingsgrove NSW 2208 Other:	Analysis Request Section	1111111111111	111111111111		2/2/2/2/8% / / / / /	(\$1 \$5% / / / / / / NOTES														Sample Receipt Advice: (Lab Use Only)	All Samples Received in Good Condition	All Documentation is in Proper Order	Samples Received Property Chilled		Lab. Herkbatch No. こくつんのくター
CHAIN-OF-CUSTODY AND ANALYSIS REQUEST	Adelaide: Tei (08) 8443 5600 Tex (08) 8443 5409 27 Cueen Street: Thebarhon SA 5031 Brisbane: Tei (07) 3252 5711 Fax (07) 3252 5712 Level 2. 33 Longland Street. Newstaad GLD 4006 Hobart: Tei (05) 6231 1520 Fax (03) 5231 1640 127 Berhuns: Street, Hobart 7AS 7005 Relbourne: Tei (05) 3919 0264 Fax (03) 9819 4079 127 Berhuns: Street, Hobart 7AS 7005 189 Burwood Read, Hawthorn VIC 3122	Task No:	Laboratory: ALS	Project Manager, Mart & Ean with		\sim	Container Type & T-A-T A-F	3.Sd		1 ES26939 V	1 1 2 2 3 3 3 C			- all		N 1 1 Section Section Section 1	Let south 1				RECEIVED BY:	Signature: I_{3}/f_{2} Date:		Signature: Levery Stefer Science Date: 22 0	Company wind (ab Sern coo Time: 4 por	Rinsed Glass Bottle, V - Vial. N - Nitric Acid Preserved
CHAIN-	IT Environmental (Australia) Pty Ltd ACV 202 923 927 A Member of The IT Samp www.theigenon.com.as	Project No: JOG 2648	ø	Samplers Name: MNSON Packused	Special Instructions:	& ASI BI (d, Cr (III), Cr (IV), (nu) Pt	to. Sample ID Sample Location Sample Sample Time	70-2-01		V. • 27		1 VS 1 VS 1	vá * 300 - 1) (G	act . Huld I	QC3 (32)		QC6 Hale	Ÿ		RELINQUISHED BY:	Signature: 20, 109 7061 Date: 22/2/01.1	Company: (TOWN CONMENTED) TIME:	Signature: Date:	Company: Time:	Container Type & Preservation Codes: P - Plastic, G - Solvent Washed Acid Rinsed Glass Bottle, V - Vial, N - Nitric Acid Preserved C - Histor-Horizo Arid Preservand C - Contribution and Acid Preserved 1 - Inc.

FROM: ALS SYDNEY

, ti

TO:

61295022105

2001-2-23 14:49 P.04

e Bottle;	= Solvent Washed Acid Rinsed G TA Preserved Bottle; ST = Steril	= Solvent Washed /	OF: xíde Preserve I Glass Bottle;	TIME: ric Acid Preserved; C = Sodium Hydrox sd Vial; BS = Sulphuric Acid Preserved	l Plastic; N = Nitric A ic Acid Preserved V	odes: P = Natura ial; VS = Sulphu
TRANSPORT CO. NAME.	TIME: 2010	cy phy one and ha	NAME: OF:	DATE: TIME:		
-		h	이 (이 NAME: OF:	DATEZ >	ted	withennes
METHOD OF SHIPMENT		A A R		246	RELINQUISHED BY	L RELIN
	0011000					
	1 9 × 9 com					
	Timm, Anal. Actioned					
	Bottle Return					
	ontract Wo					
	Water Chilled					
	-bast-					
	1 date:		- /	1	<i>k</i> .	1 1
	E \$ 27983		· -	1×257 4/166 1	Ant	Sore Hotor
/ / NOTES	Batch No.: / Fr OKG	11111/	C/ Hd	ö	TIME	MATRIX DATE
///	11111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Se la	2 ANALTAS (IN PRIDE	Hard for the	deg. C PLEASE
///	11111	1111/2/21		1	+ CEN	
////	//////	(1///×/////	ap 0	1 nd nates in the	2 42 - 20	No No
11/1	++++/n/ /	1/////////		1.0 4 9.1	1 - 1	1. J.
Ĩ	Ť			COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:	SPECIAL HANDLIN	COMMENTS/
	ocsa: D rocsen // 1-		OC LI		ļ	QUOTE NO .:
30ARD: C E-MAIL: C			REPC	-5-11	REPORT NEEDED BY:	
EAX: (07) 3243 7218	1	2-83 FAX: 952	1	14	INVOICE TO	BENET SEI
TEL: 401) 3243 7222	4 ArchieD	SAMPLERS: J. PELEILAL		KINCSCROVE 2208	N ST K	12 FOLLEST
32 Shand Street	004070					
Australian Laboratory	008000					

AUSTRALIAN LABORATORY SERVICES P/L

Explosives Water & Waste Water Environmental Food & Pharmaceuticals Biological

A.C.N. 006 823 089

States of the states of the Analytical Report IT ENVIRONMENTAL (AUSTRALIA) PTY LTD **MATT BENNETT** Contact **17 FORRESTER ST** : 0102075 Batch Number **KINGSGROVE** Job Ref : J109264B Sample(s) Received : 23/02/2001 NSW 2208 : 30976 Report No Methods: 235 Chromium (III), Dry Weight 235 Chromium (VI), Dry Weight 404FIMS Mercury by Vapour AAS, Dry Weight 406-MS Elements by ICP-MS, Dry Weight 501-FID Total Petroleum Hydrocarbons, Dry Weight 504P&T BTEX/MAH (Purge & Trap), Dry Weight 504P&T C6-C9 (Purge & Trap), Dry Weight 504P&T MAH/TPH, Surrogate 506-ECD Organochlorine Pesticides, Dry Weight 509-HPLC Phenoxy Herbicides, Dry Weight E100.01 Moisture Content Attached Results Approved by: lave John Levvey Dip.App.Sci (Chemistry) Senior Analyst - Metals Daniel Dam Anthony Crane B.App.Sci (Chemistry) B.App.Sci. (Environmental) Senior Analyst - Chromatography Laboratory Manager This Laboratory is accredited by the National Association of Testing Authorities, Australia. The tests reported herin have been performed in accordance with its terms of accreditation. NATA ENDORSED DOCUMENT Document may not be reproduced except in full. NATA Accreditation No. 1645 * This is the Final Report which supersedes any reports previously issued relating to the sample(s) included. All samples tested as submitted by client. # Denotes methods not covered by NATA terms of accreditation

Explosives Water & Waste Water Environmental Food & Pharmaceuticals Biological

A.C.N. 006 823 089

Results		18月2日1日1日1日	的现在分词是此为此	Report No	
	0102075/004 QC1A	0102075/006 QC3A	0102075/007 QC4A	0102075/010 QC7A	0102075/011 COMP QCD1
	19/02/2001 23/02/2001	19/02/2001 23/02/2001	19/02/2001 23/02/2001	19/02/2001 23/02/2001	23/02/2001 23/02/2001
BTEX/MAH (PURGE & TRAP), DRY WE	IGHT				
Method: 504P&T Units: mg/kg	and the second state of the second states	Sarria a se	ho as look a set about the other of	Contraction and Contract and Contract of the	and the state of the second second second
Benzene	-	2	<0.1		
Ethylbenzene		-	<0,1		•
Toluene		-	<0.1	T :	9 9 3
Xylenes		÷	<0.1	1 2	3 4 3
CHROMIUM (III) ANALYSIS, DRY WEIG	GHT				s i strati.
Method: 235 Units: mg/kg	allen Markensen al Mariany)	The state of the second se	1997-2272 Cod CMI (1997)	a ng ta wata ta	vor of sharest standingthese states
Trivalent Chromium, Cr3+	-1	÷ 0	23	15	9.8
CHROMIUM (VI) ANALYSIS, DRY WEIG	HT. STARLING	e carrière de la composition de la comp		1000/07-2040/A	
Method 235 Units: mg/kg		11/045/05/10/10/2000 		and the second	
Hexavalent Chromium,Cr6+	-		<0.2	<0.2	<0.2
ELEMENTS by ICP-MS, DRY WEIGHT				HIN HEREITER	
Method: 406-MS Units: mg/kg				and the state of the second	San Angela Gunda ang a
Arsenic	_		24	2.4	2.7
Boron	-		16	<2.0	5.7
Cadmium	-		<1.0	<1.0	<1.0
Chromium			23	15	10
Copper	-		16	2.8	3.8
Lead	-	-	42	11	15
Zinc	-		120	7.9	14
والمساور معاول الروار والمراجع والموجوف والموار والمروح وساد ووالمعاد والمنافر والمساورين والمراجع والمراجع		North Martin Carl		100000000000000000000000000000000000000	
HYDROCARBONS (C6-C9), DRY WEIGH		943 PAN 14 1999		and the Area	
Method: 504P&T Units: mg/kg TPH C6 - C9		<5.0	<5.0	-	-
	and the second second		-010 -010000000000	Marita Adamini	SPARSON D-DEPT-
HYDROCARBONS (TPH), DRY WEIGHT					
Method: 501-FID Units: mg/kg		<20	<20		-
TPH C10 - C14	-	47	23		
ТРН С15 - С28 ТРН С29 - С36	-	82	38		
and the second se		NAMES OF COMPANY	00 10.389.389.375375	27645145045-82614-	a constant stars
MERCURY by VAPOUR-AAS, DRY WEIG	HI STATES		之气。强调、行动。		an a
Method: 404FIMS Units: mg/kg			0.04	0.05	0.42
Mercury	-	·	0.04	0.05	0.42
ORGANOCHLORINE PESTICIDES, DRY	WEIGHT	A BARA SA			
Method: 506-ECD Units: mg/kg					
Aldrin		3 9 -3		1 2 ()	<0.1
alpha - BHC	3		2	2 4 3)	<0.1
alpha - Endosulphan	×	(1 5		i k s	<0.1
beta - BHC	-	(#)	-	3 4 3)	<0.1
beta - Endosulphan	-		20 10		<0.1

Results

Explosives Water & Waste Water Environmental Food & Pharmaceuticals Biological

GR es B BI Analytical Laboratories

A.C.N. 006 823 089

585 Blackburn Road Notting Hill, Victoria, Australia 3168 Telephone (03) 9562 5899 Fax (03) 9562 0336

Report No: 30976 0102075/007 0102075/010 0102075/011 0102075/006 0102075/004 COMP QCD1 QC7A QC1A QC3A QC4A 19/02/2001 23/02/2001 19/02/2001 19/02/2001 19/02/2001 23/02/2001 23/02/2001 23/02/2001 23/02/2001 23/02/2001

5 C	23/02/2001	23/02/2001	23/02/2001	23/02/2001	23/02/2001
Chlordane	140		5		<0.1
DDD			-	-	<0.1
DDE	(•))			ř.	<0.1
DDT	141	200		·•	<0.1
delta - BHC	150		-	12	<0.1
Dieldrin			17		<0.1
Endosulphan sulphate	1 2 11	(1 4)	•		<0.1
Endrin	2 1 7.11	-	3	105	<0.1
Endrin Aldehyde	(+))	0 11	×	3 0 :	<0.1
Heptachlor	÷.		-	-	<0.1
Heptachlorepoxide			-	-	<0.1
Hexachlorobenzene	-	3 .	-	80	<0.1
Lindane	a a	725	<u>.</u>		<0.1
Methoxychlor		S.			<0.1
OVEN MOISTURE CONTENT					
Method: E100.01 Units: % w/w	an na haite i Markatan Manatan An	and Sold Thromosoftware Solds Co.(210) o	and the second	Contraction of the last of the	
Moisture	16.8	18.3	18.3	13.8	15.8
PHENOXY HERBICIDES, DRY WEIGHT	and a second state of the second s				
Method: 509-HPLC Units: mg/kg	and the second sec				
2,4,5-Trichlorophenoxy-	<0.5			3 7 2	<u>.</u>
acetic acid (245T)					
2,4-Dichlorophenoxy-	<0.5		-	2 .	ē.
acetic acid (24D)					
2-Methyl-4-chlorophenoxy-	<0.5	-	-	(=)	ē.
acetic acid (MCPA)		nkoriaatti mõisut	D. SOL: WARDEN	Storman Color	antolas televicies d
VOLATILES (PURGE & TRAP), SURROG	ATE RECOVERIES		2019885000012	CHARLEN AND	
Method: 504P&T Units: % Recovered			117		
Surrogate Recovery,	-	118	117	3 5 3	1
toluene-d8					

Explosives Water & Waste Water Environmental Food & Pharmaceuticals

Biological

A.C.N. 006 823 089

Creiffice (Lunling Management System

	0102075Q012 Duplicate 0102075/010	0102075Q013 Spike Recovery 0102075/010	0102075Q014 Spike Recovery Lab Control	0102075Q015 DIGEST BLANK	0102075Q016 Duplicate 0102075/010
	26/02/2001 26/02/2001	24/02/2001 26/02/2001	26/02/2001 26/02/2001	26/02/2001 26/02/2001	26/02/2001 26/02/2001
LEMENTS by ICP-MS, AS RECEIVED					
1ethod: 406-MS Units: mg/kg					
Boron	-	ie ()	0.50	<1.0	
Cadmium	-	1	-	<1.0	
Chromium		÷.	V.	<1.0	2
Copper	-	-	1.51	<1.0	
Lead	7. . .	÷	2.43	<1.0	(m)
Zinc	3)	.		<1.0	127
ERCURY by VAPOUR-AAS, AS RECH	CIVED	her weight and	1000月1日日		
lethod: 404FIMS Units: mg/kg	an a	волови укласни стави	ACCULATION OF THE OWNER OF	2 (1 (1 (1))) (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	and the off of all the ball of the base
Mercury	-	1	(0 4)	<0.01	3 .
C RESULTS - DUPLICATES				이 주요	
elative Percent Difference, %	NATIONAL DE LA CARL	CROPPING COLORS	1.2570 (3 GUANE) #1-01	Report the part of the second	o destas de la constante da constante de la con
Boron	-				<1.0
Cadmium	V2	-	5 1	-	<1.0
Chromium	-		14	≅	21.2
Copper	-			-	12.4
Lead	2.9	2		-	
Zinc	2.5	-	-	2	14.0
a second part of the second second second second second	AND	an parties a			Station Bank 19
C RESULTS - SPIKED SAMPLES ercent Recovery, %	이 가슴다 감독하는 것을 사람이 있다.	SCARLARD		100-000309-040560	n namalan italakan it

Explosives Water & Waste Water Environmental Food & Pharmaceuticals

Biological

A.C.N. 006 823 089

Quality Results		國和阿爾斯公司	的形式的	Report No:	30970
	0102075Q017 Spike Recovery 0102075/010	0102075Q018 Spike Recovery Lab Control	0102075Q019 QCBlank method blank 28/02/2001	0102075Q020 QCBlank method blank 28/02/2001	0102075Q021 Spike Recovery soil
	26/02/2001 26/02/2001	26/02/2001 26/02/2001	28/02/2001	28/02/2001	28/02/2001 28/02/2001
BTEX/ <mah &="" (purge="" as="" rec<="" td="" trap),=""><td>CEIVED</td><td></td><td></td><td></td><td></td></mah>	CEIVED				
Method: 504P&T Units: mg/kg					
Benzene	¥3	-		<0.1	19 4
Ethylbenzene		-		<0.1	-
Toluene	3 - 3	-	5 :	<0.1	3 :
Xylenes	·•	<u>2</u>	241	<0.1	846
HYDROCARBONS (C6-C9), AS RECEIV	ED				
Method: 504P&T Units: mg/kg	Contraction and the second second second				
ТРН С6 - С9	3 .	-	<5.0	-	3 - 5
QC RESULTS - SPIKED SAMPLES	建筑相关运行				「「金をする」
Percent Recovery, %	hand all here and the second of			Carlo There is a second second	2.892 (CONTRACTOR) - 211
	88.6	107	(E)	÷	
Arsenic					
Arsenic Cadmium	94.7	101		÷	
	94.7 118	101 114	0700 31≢81	- -	-
Cadmium				- - 2	*
Cadmium Chromium	118	114	*	-	
Cadmium Chromium Copper	118 122	114 113	*	- - - - -	
Cadmium Chromium Copper Lead	118 122 102	114 113 97.1	*		88.3
Cadmium Chromium Copper Lead Zinc	118 122 102	114 113 97.1		- - - - - - -	- - - 88.3 94.6
Cadmium Chromium Copper Lead Zinc TPH C6 - C9	118 122 102	114 113 97.1	*		

Explosives Water & Waste Water Environmental Food & Pharmaceuticals

Biological

A.C.N. 006 823 089

Certified Quality Management System

C. HORSENSON

	0102075Q022 Duplicate 0102075/006	0102075Q023 QCBlank METHOD BLANK	0102075Q024 Spike Recovery SOIL	0102075Q025 Duplicate 0102075/006	0102075Q026 QCBlank METHOD BLK
	28/02/2001 28/02/2001	27/02/2001 28/02/2001	27/02/2001 28/02/2001	27/02/2001 28/02/2001	23/02/2001 28/02/2001
HYDROCARBONS, AS RECEIVED					
Method: 501-FID Units: mg/kg					
TPH C10 - C14	-	<20	-	5	
TPH C15 - C28	-	<20	-	•	
ТРН С29 - С36	-	<20		-	
ORGANOCHLORINE PESTICIDES,	AS RECEIVED				
Method: 506-ECD Units: mg/kg	LA MARINE POLICIA CONTRACTOR				
Aldrin	•	2	*	-	<0.1
alpha - BHC	(*)	-		÷	<0.1
alpha - Endosulphan		-		T	<0.1
beta - BHC		8	(1)	÷	<0.1
beta - Endosulphan		-			<0.1
Chlordane		-	(=)	-	<0.1
DDD		9	-		<0.1
DDE		-	())		<0.1
DDT		1 <u>-1</u>	(# 2	-	<0.1
delta - BHC		•		· ·	<0.1
Dieldrin	(₩)	•		2.00	<0.1
Endosulphan sulphate		21	341 1	200	<0.1
Endrin		•	2		<0.1
Endrin Aldehyde		-	-);=:	<0.1
Heptachlor	•	-	-	3 4 5	<0.1
Heptachlorepoxide				-	<0.1
Hexachlorobenzene					<0.1
Lindane		•	2	8 2	<0.1
Methoxychlor		ं 🕫	α π		<0.1
QC RESULTS - DUPLICATES	(A. 2010年)日回日前期。19	No. Contraction of the Contracti	國際政策的知识	Television -	
Relative Percent Difference, %	u. 1120119242 (Detroite States and all the	1410977-14061441704124-5	1211a - Colo La Spirita y Chillippi Spirita y	an in a statistic of a statistic sectors of	
ТРН С6 - С9	<1.0		8	1.	<u>u</u>
TPH C10 - C14				<1.0	ž.
TPH C15 - C28	÷.	12	2	13.0	
ТРН С29 - С36	5-5 1-5		8	11.9	÷.
QC RESULTS - SPIKED SAMPLES	or	(1.1.1.) (AND 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	States and		art of subsets

Explosives Water & Waste Water Environmental Food & Pharmaceuticals Biological

Report No: 30976

A.C.N. 006 823 089

585 Blackburn Road Notting Hill, Victoria, Australia 3168 Telephone (03) 9562 5899 Fax (03) 9562 0336

Quality Results 0102075Q030 0102075Q029 0102075Q027 0102075Q028 QCBlank Spike Duplicate Spike METHOD Recovery Recovery 0102075/011 BLANK WATER SOIL 23/02/2001 27/02/2001 27/02/2001 23/02/2001 28/02/2001 28/02/2001 28/02/2001 28/02/2001 PHENOXY HERBICIDES Method: 509-HPLC Units: mg/L <0.1 2,4,5-Trichlorophenoxyacetic acid (245T) <0.1 2,4-Dichlorophenoxyacetic acid (24D) <0.1 2-Methyl-4-chlorophenoxyacetic acid (MCPA) QC RESULTS - DUPLICATES Relative Percent Difference, % <1.0 Aldrin alpha - BHC <1.0 <1.0 alpha - Endosulphan <].0 beta - BHC <1.0 beta - Endosulphan <1.0 Chlordane <1.0 DDD DDE <1.0 DDT <1.0 <1.0 delta - BHC <1.0 Dieldrin <1.0 Endosulphan sulphate <1.0 Endrin <1.0 Endrin Aldehyde <1.0 Heptachlor <1.0 Heptachlorepoxide <1.0 Hexachlorobenzene Lindane <1.0 <1.0 Methoxychlor QC RESULTS - SPIKED SAMPLES Percent Recovery, % Aldrin 100 92.5 alpha - BHC 115 alpha - Endosulphan beta - BHC 75.0 97.5 beta - Endosulphan 92.5 Chlordane 102 DDD 100 DDE 95.0 delta - BHC Dieldrin 110

Reported: Wednesday, 28 February 2001

Explosives Water & Waste Water Environmental Food & Pharmaceuticals Biological

GR es oratories

A.C.N. 006 823 089

Certifice Quality Munagement System

585 Blackburn Road Notting Hill, Victoria, Australia 3168 Telephone (03) 9562 5899 Fax (03) 9562 0336

Quality Results

Report No: 30976

	0102075Q027 Spike Recovery SOIL	0102075Q028 Duplicate 0102075/011 23/02/2001	0102075Q029 QCBlank METHOD BLANK	0102075Q030 Spike Recovery WATER
	23/02/2001 28/02/2001	28/02/2001	27/02/2001 28/02/2001	27/02/2001 28/02/2001
Endosulphan sulphate	80.0		÷	с <u>и</u>
Endrin	70.0	-		
Endrin Aldehyde	80.0	3 2 3	-	
Heptachlor	75.0	0.5	÷	
Heptachlorepoxide	92.5	-		
Hexachlorobenzene	100	040	2	3 6 2
Lindane	110		-	
Methoxychlor	60.0	1.	×	
2,4-Dichlorophenoxy- acetic acid (24D)	90 s.	.e	2	126

Quality Results provided in this report are for laboratory Quality Control purposes.

22136 Perth: Tel (08) 9481 4333 Fax (08) 9481 4122 Level 7, 220 George's Terrace, Perth WA 6000 Syfeney: Tel: (02) 9502 4844 Fax (02) 9502 2105 17 Forrester Street, Kingsgrove NSW 2208 Other:	Analysis Request Section	14/ 1 200 X 1	1.00	20	1 comp OCDI				Campo receipt Advice. (Lad Use Unit)	:	Samples Received Properly Chilled	Lab. Ref/Batch No.	ISSUE DATE: 10/4/00
255 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		: Cartobles. nager: Matt Rennett		Preservative* T-A-T Preservative* (Specify)					Date: 22 12		R (ISSUE: 3
The Wed -	Task No: 070	Laboratory: \int_{0}^{∞} Project Manager:	0C81 + QCC1	Time Matrix C		20.2.01			CLA-101 Signature: 2241		Signature:	Ivent Washed Acid Rinsed Glass Bottle, V - Via	
Care of Bare of The Investor of Au.	Project No: J109764B	Project Name: BOROL WINGham Semplers Name: AUMAN Packuraboo	QCA CC	C Sample Location Sample	accil acpl	20 20 20 20 20 20 20 20 20 20 20 20 20 2	acta acta acta	RELINQUISHED BY:	Signature: 200 Conference 2	Monnerta	Signature: Date: Company: Time:	e i	Publicition - Custop Civid Anturais Request

the **Gigroup**

Appendix C Correspondence

Excavation and Validation of Hydrocarbon 'Hotspot' Former Boral Site, Lot 310, Wingham

IT Environmental (Australia) Pty Ltd **Matt Bennett** Sydney Office ABN 89 003 931 057 the group A Member of The IT Group Date: 14 0101 Time: Made Call Received Call Return Call Internal Message Bore Project Name: Name: **Project Number:** Company: 6591 2299 Phone: Address: Mobile: 2 Fax: Email: **Summary of Conversation:** Fax Soil resarding from removed De land CII. claett . Cim Leve. d suf He went renticol 20 call etispoic Arburya (1) 1 10 aun 01 ators seel Ci 10 65 2 :fi-dicated \$\$ 355 -20 Lise could. 李(iSI cove Action: _

P109264-C

FAXE

IT Environmental (Australia) Pty Ltd A Member of The IT Group

ABN: 89 003 931 057

17 Forrester Street Kingsgrove .NSW 2208 Tel: (02) 9502 4844 Fax: (02) 9502 2105 Email: Sydney.Admin@theitgroup.com

www.theitgroup.com.au

FACSIMILE

То:	Andrew Very, Greater Taree Council	Fax No.:	02 6591 3351
cc:		Fax No.:	
From:	Matthew Bennett		
Date:	6 September 2001	Page 1 of:	4

Re: Disposal of Soil to Landfill

Andrew,

Further to my previous fax dated 6 August 2001 and subsequent communications, please find attached a copy of a laboratory report showing TCLP leachate analysis results for stockpile sample SP2.

In my previous fax, which included all other relevant results, I indicated that this stockpile sample contained 12mg/kg lead - just above the NSW EPA (1999) inert waste criteria (CT1) of 10mg/kg. All other sample results from the stockpiled soil were below inert waste criteria.

The attached TCLP test result shows a concentration of <0.1mg/L lead in leachate from the sample SP2. The combined total lead concentration (10mg/kg) and TCLP lead (<0.1mg/L) are less than the NSW EPA (1999) inert waste criteria SCC1 (1500mg/kg) and TCLP1 (0.5mg/L) respectively.

These latest results show that all soil in the stockpile (approximately 30m³) meet the NSW EPA (1999) waste guidelines criteria for inert waste.

Can you please advise whether the Taree landfill will accept the soil, and if so what the cost of disposal would be? Your early response would be greatly appreciated.

If you require further information or wish to discuss this matter, please do not hesitate to contact me on (02) 9502 4844.

Regards,

Matthew Bennett Project Manager

Ref: P109264C-F04.doc

Page 1 of 1

This facsimile contains CONFIDENTIAL INFORMATION which may also be LEGALLY PRIVILEGED and which is intended only for the use of the Addressee(s) named. If you are not the intended recipient of this facsimile, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination or copying of this facsimile is strictly prohibited. If you received this facsimile in error, please notify us immediately by telephone and destroy the original facsimile. Thank you.

FAXED

FACSIMILE

IT Environmental (Australia) Pty Ltd. A Member of The IT Group

ABN: 89 003 931 057

17 Forrester Street Kingsgrove NSW 2208 Tel: (02) 9502 4844 Fax: (02) 9502 2105 Email: Sydney.Admin@theitgroup.com

www.theitgroup.com.au

То:	Andrew Very, Greater Taree Council	Fax No.:	02 6591 3351
cc:		Fax No.:	
From:	Matthew Bennett		
Date:	6 August 2001	Page 1 of:	14-

Re: Disposal of Soil to Landfill

Andrew,

I have spoken to Phillip Martin regarding this matter, and he suggested I send the attached results to you.

We have assessed a site in Wingham for Boral Limited. One area of the site contained isolated petroleum hydrocarbon impacted soil from parking of diesel-operated equipment. We excavated all of this material, a total of approximately 30m³ soil in March this year. Since then the soil has been spread on a concrete slab under cover.

Our client has requested that we determine whether the soil could be removed to a landfill in the area. I understand from Phillip that the Taree landfill can accept inert waste, but not solid waste.

We have collected three samples of this material: SP1, SP2 and SP3. All samples have been analysed for total petroleum hydrocarbons (TPH). In addition, samples SP2 and SP3 have been analysed benzene, toluene, ethylbenzene and xylene (BTEX), for a suite of metals, polynuclear aromatic hydrocarbons (PAHs) and phenols.

Attached are copies of NATA-certified laboratory analysis reports for the above analyses. Some additional sample results are shown in one of the reports for sample ID's V12-V18, which are excavation validation samples, and QCX which is a duplicate validation sample.

The results show that all results for TPH, BTEX, PAHs, phenols and metals meet inert waste criteria in the NSW EPA (1999) waste guidelines, with the exception of one metal result for lead in SP2 (12mg/kg). The other lead result for SP3 was 2mg/kg. All other metal results were below the inert criteria of 10mg/kg.

Ref: P109264C-F02.doc

Page 1 of 2

This facsimile contains CONFIDENTIAL INFORMATION which may also be LEGALLY PRIVILEGED and which is intended only for the use of the Addressee(s) named. If you are not the intended recipient of this facsimile, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination or copying of this facsimile is strictly prohibited. If you received this facsimile in error, please notify us immediately by telephone and destroy the original facsimile. Thank you.

IT Environmental (Australia) Pty Ltd A Member of The IT Group

Can you please advise whether the Taree landfill will accept the material (30m³) based on the attached results and above information, and if so what the cost of disposal would be?

If you require further information or wish to discuss this matter, please do not hesitate to contact me on (02) 9502 4844.

Regards

Matthew Bennett Project Manager

This facsimile contains CONFIDENTIAL INFORMATION which may also be LEGALLY PRIVILEGED and which is intended only for the use of the Addressee(s) named. If you are not the intended recipient of this facsimile, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination or copying of this facsimile is strictly prohibited. If you received this facsimile in error, please notify us immediately by telephone and destroy the original facsimile. Thank you.

the figroup

Appendix D Calibration Record Sheets

Excavation and Validation of Hydrocarbon 'Hotspot' Former Boral Site, Lot 310, Wingham

the Stoup A Member of The IT Croup

CALIBRATION RECORD SHEET

Date: 19 2181 - 20/2/01 Project: Baral Wingham	Project No: J109264-B
ITE Personnel: A Packino d	PM: M Bennett
Description of Activities:	
Validation of holspot on Lot 310 - soil ESA of loss 267 1 266 - testpitting	

Instrument Details:	
Instrument: $PID \neq 4$	Brand/model:
Serial No/Equipment No:	Parameter:
Calibration Type & Make: 1500 Tylene	Calibration Concentration 95.5

Calibration: 95.5% iscutylene	
Time: 110pm	Response Factor: 0-60
Weather/Temp: inmid, wet	Reading: 57.9
Signed:	Satisfactory: YEYNO*

Calibration Check 1:				
Time:	Response Factor:			
Weather/Temp:	Reading:	5		
Signed:	Satisfactory:	YES/NO*		

Calibration Check 2:			
Time:	Response Factor:		
Weather/Temp:	Reading:		
Signed:	Satisfactory: YES/NO*		

* Calibration reading must be within 10% of calibration standard to be satisfactory. Please note action taken if calibration is not satisfactory

NB attach all relevant calibration certificates to this sheet.

CALIBRATION RECORD SHEET

Date:	22/3/01	Project: Boral	Wingtham	Project No: UIO9264B	
ITE Personnel: A Packwood			PM: M Bennett		
Descript	tion of Activities:				
	Validat	in 1 stockpile	soil sampl	NQ	
				9	
			<u></u>		
T			Stewart Trans Letting		
Instrument Details:		Brand/mod	Brand/model:		
Instrument: $\rho_{10} + 5$ Serial No/Equipment No:		Parameter:			
	on Type & Make: 150	in the second		Calibration Concentration 109 ppm	
Canorati	on Type & Make. 130				
Calibrat	ion:				
Time:	12-45		Response F	Response Factor: 0-60	
Weather/Temp: Warm Dry		Reading:	Reading: 66.7		
Signed:		Satisfactory	Satisfactory: YESINO*		
Calibrati	ion Check 1:				
Time:	on Check 1:		Response F	actor:	
Weather/Temp:		Reading:			
Signed:		Satisfactory	Satisfactory: YES/NO*		
				and the second	
Calibrati	on Check 2:	- Smart Hilling - State - Stat			
Time:			Response Factor:		
Weather/Temp:		Reading:			
Signed:		Satisfactory	Satisfactory: YES/NO*		

* Calibration reading must be within 10% of calibration standard to be satisfactory.

Please note action taken if calibration is not satisfactory

NB attach all relevant calibration certificates to this sheet.

the **(igroup**

Appendix E Soil Disposal Record

Excavation and Validation of Hydrocarbon 'Hotspot' Former Boral Site, Lot 310, Wingham

Resource Recovery

Waste Management and Recycling

TAREE DEPOT: BUCKETTS WAY LANDFILL DEPOT PO Box 492 TAREE 2430 Telephone (02) 86816236 Fex (02) 86816236 Fex (02) 86816296 655/363/

FACSIMILE MESSAGE

DATE 17/10/07 TO: Matthew Bennett IT isnuironmental FAXNO 02 95022105 PHONE FROM: Reay Lodge PAGES (Including cover page) MESSAGE : RE Soil Aron Boral Wingham Please be advised 5 truckloads of soil total weight 57.5 tonne was dervered yesterday 16/10/01 to this site at no Cosv Great Lakes Community Resources Inc

Taree Depot:

Bucketts Way, Taree (P.O. Box 492)